BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

866 related articles for article (PubMed ID: 33214317)

  • 1. Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations.
    Sharon O; Fahoum F; Nir Y
    J Neurosci; 2021 Jan; 41(2):320-330. PubMed ID: 33214317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI.
    Yakunina N; Kim SS; Nam EC
    Neuromodulation; 2017 Apr; 20(3):290-300. PubMed ID: 27898202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential.
    Warren CM; Tona KD; Ouwerkerk L; van Paridon J; Poletiek F; van Steenbergen H; Bosch JA; Nieuwenhuis S
    Brain Stimul; 2019; 12(3):635-642. PubMed ID: 30591360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: A report of three studies.
    Burger AM; Van der Does W; Brosschot JF; Verkuil B
    Biol Psychol; 2020 Apr; 152():107863. PubMed ID: 32050095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcutaneous vagus nerve stimulation - A brief introduction and overview.
    Hilz MJ
    Auton Neurosci; 2022 Dec; 243():103038. PubMed ID: 36201901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses.
    Wienke C; Grueschow M; Haghikia A; Zaehle T
    J Neurosci; 2023 Sep; 43(36):6306-6319. PubMed ID: 37591736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anatomical basis for transcutaneous auricular vagus nerve stimulation.
    Butt MF; Albusoda A; Farmer AD; Aziz Q
    J Anat; 2020 Apr; 236(4):588-611. PubMed ID: 31742681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study.
    Kraus T; Kiess O; Hösl K; Terekhin P; Kornhuber J; Forster C
    Brain Stimul; 2013 Sep; 6(5):798-804. PubMed ID: 23453934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term transcutaneous vagus nerve stimulation increases pupil size but does not affect EEG alpha power: A replication of Sharon et al. (2021, Journal of Neuroscience).
    Lloyd B; Wurm F; de Kleijn R; Nieuwenhuis S
    Brain Stimul; 2023; 16(4):1001-1008. PubMed ID: 37348704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous Auricular Vagus Nerve Stimulation.
    Ellrich J
    J Clin Neurophysiol; 2019 Nov; 36(6):437-442. PubMed ID: 31688327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants.
    Forte G; Favieri F; Leemhuis E; De Martino ML; Giannini AM; De Gennaro L; Casagrande M; Pazzaglia M
    PeerJ; 2022; 10():e14447. PubMed ID: 36438582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder.
    Fang J; Rong P; Hong Y; Fan Y; Liu J; Wang H; Zhang G; Chen X; Shi S; Wang L; Liu R; Hwang J; Li Z; Tao J; Wang Y; Zhu B; Kong J
    Biol Psychiatry; 2016 Feb; 79(4):266-73. PubMed ID: 25963932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous electrical stimulation of auricular branch of the vagus nerve effectively and rapidly modulates the EEG patterns in patients with possible electrographic status epilepticus.
    Sarma GRK; Sharma AR; John AT
    Epileptic Disord; 2023 Aug; 25(4):500-509. PubMed ID: 37158133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous vagus nerve stimulation and the realm of its therapeutic hopes and physiologic enigmas.
    Hilz MJ; Bolz A
    Auton Neurosci; 2022 Dec; 243():103039. PubMed ID: 36279622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus.
    Yakunina N; Kim SS; Nam EC
    PLoS One; 2018; 13(11):e0207281. PubMed ID: 30485375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.
    Clancy JA; Mary DA; Witte KK; Greenwood JP; Deuchars SA; Deuchars J
    Brain Stimul; 2014; 7(6):871-7. PubMed ID: 25164906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous vagus nerve stimulation via tragus or cymba conchae: Are its psychophysiological effects dependent on the stimulation area?
    Borges U; Pfannenstiel M; Tsukahara J; Laborde S; Klatt S; Raab M
    Int J Psychophysiol; 2021 Mar; 161():64-75. PubMed ID: 33444689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control.
    Fischer R; Ventura-Bort C; Hamm A; Weymar M
    Cogn Affect Behav Neurosci; 2018 Aug; 18(4):680-693. PubMed ID: 29693214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation.
    Burger AM; D'Agostini M; Verkuil B; Van Diest I
    Psychophysiology; 2020 Jun; 57(6):e13571. PubMed ID: 32202671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions.
    Colzato L; Beste C
    J Neurophysiol; 2020 May; 123(5):1739-1755. PubMed ID: 32208895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.