BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 33214551)

  • 21. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway.
    Zhong J; Martinez M; Sengupta S; Lee A; Wu X; Chaerkady R; Chatterjee A; O'Meally RN; Cole RN; Pandey A; Zachara NE
    Proteomics; 2015 Jan; 15(2-3):591-607. PubMed ID: 25263469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.
    Hanover JA; Krause MW; Love DC
    Nat Rev Mol Cell Biol; 2012 Apr; 13(5):312-21. PubMed ID: 22522719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Chemical Genetic Method for Monitoring Genome-Wide Dynamics of
    Liu TW; Myschyshyn M; Sinclair DA; Vocadlo DJ
    ACS Cent Sci; 2019 Apr; 5(4):663-670. PubMed ID: 31041386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy.
    Medford HM; Porter K; Marsh SA
    Am J Physiol Heart Circ Physiol; 2013 Jul; 305(1):H114-23. PubMed ID: 23624624
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Guo H; Zhang B; Nairn AV; Nagy T; Moremen KW; Buckhaults P; Pierce M
    J Biol Chem; 2017 Mar; 292(10):4123-4137. PubMed ID: 28096468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics.
    Vosseller K; Wells L; Hart GW
    Biochimie; 2001 Jul; 83(7):575-81. PubMed ID: 11522385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tools for probing and perturbing O-GlcNAc in cells and in vivo.
    Cecioni S; Vocadlo DJ
    Curr Opin Chem Biol; 2013 Oct; 17(5):719-28. PubMed ID: 23906602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology.
    Vaidyanathan K; Durning S; Wells L
    Crit Rev Biochem Mol Biol; 2014; 49(2):140-163. PubMed ID: 24524620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. O-GlcNAcylation Enhances Double-Strand Break Repair, Promotes Cancer Cell Proliferation, and Prevents Therapy-Induced Senescence in Irradiated Tumors.
    Efimova EV; Appelbe OK; Ricco N; Lee SS; Liu Y; Wolfgeher DJ; Collins TN; Flor AC; Ramamurthy A; Warrington S; Bindokas VP; Kron SJ
    Mol Cancer Res; 2019 Jun; 17(6):1338-1350. PubMed ID: 30885991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide repression of NF-κB target genes by transcription factor MIBP1 and its modulation by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase.
    Iwashita Y; Fukuchi N; Waki M; Hayashi K; Tahira T
    J Biol Chem; 2012 Mar; 287(13):9887-9900. PubMed ID: 22294689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms regulating O-linked N-acetylglucosamine (O-GlcNAc)-processing enzymes.
    King DT; Males A; Davies GJ; Vocadlo DJ
    Curr Opin Chem Biol; 2019 Dec; 53():131-144. PubMed ID: 31654859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin.
    Kelly WG; Hart GW
    Cell; 1989 Apr; 57(2):243-51. PubMed ID: 2495182
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Zhang Z; Parker MP; Graw S; Novikova LV; Fedosyuk H; Fontes JD; Koestler DC; Peterson KR; Slawson C
    J Biol Chem; 2019 Jan; 294(4):1363-1379. PubMed ID: 30523150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide map of regulatory interactions in the human genome.
    Heidari N; Phanstiel DH; He C; Grubert F; Jahanbani F; Kasowski M; Zhang MQ; Snyder MP
    Genome Res; 2014 Dec; 24(12):1905-17. PubMed ID: 25228660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The tumor suppressor HIC1 (hypermethylated in cancer 1) is O-GlcNAc glycosylated.
    Lefebvre T; Pinte S; Guérardel C; Deltour S; Martin-Soudant N; Slomianny MC; Michalski JC; Leprince D
    Eur J Biochem; 2004 Oct; 271(19):3843-54. PubMed ID: 15373830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging.
    Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J
    Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability.
    Yang X; Su K; Roos MD; Chang Q; Paterson AJ; Kudlow JE
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6611-6. PubMed ID: 11371615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of transcription factor function by O-GlcNAc modification.
    Ozcan S; Andrali SS; Cantrell JE
    Biochim Biophys Acta; 2010; 1799(5-6):353-64. PubMed ID: 20202486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Requirement of decreased O-GlcNAc glycosylation of Mef2D for its recruitment to the myogenin promoter.
    Ogawa M; Sakakibara Y; Kamemura K
    Biochem Biophys Res Commun; 2013 Apr; 433(4):558-62. PubMed ID: 23523791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster.
    Liu TW; Myschyshyn M; Sinclair DA; Cecioni S; Beja K; Honda BM; Morin RD; Vocadlo DJ
    Nat Chem Biol; 2017 Feb; 13(2):161-167. PubMed ID: 27918560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.