These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 33214574)
1. DNA damage induced by KP372-1 hyperactivates PARP1 and enhances lethality of pancreatic cancer cells with PARP inhibition. Viera T; Patidar PL Sci Rep; 2020 Nov; 10(1):20210. PubMed ID: 33214574 [TBL] [Abstract][Full Text] [Related]
2. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Huang X; Dong Y; Bey EA; Kilgore JA; Bair JS; Li LS; Patel M; Parkinson EI; Wang Y; Williams NS; Gao J; Hergenrother PJ; Boothman DA Cancer Res; 2012 Jun; 72(12):3038-47. PubMed ID: 22532167 [TBL] [Abstract][Full Text] [Related]
3. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone. Chakrabarti G; Silvers MA; Ilcheva M; Liu Y; Moore ZR; Luo X; Gao J; Anderson G; Liu L; Sarode V; Gerber DE; Burma S; DeBerardinis RJ; Gerson SL; Boothman DA Sci Rep; 2015 Nov; 5():17066. PubMed ID: 26602448 [TBL] [Abstract][Full Text] [Related]
4. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone. Moore Z; Chakrabarti G; Luo X; Ali A; Hu Z; Fattah FJ; Vemireddy R; DeBerardinis RJ; Brekken RA; Boothman DA Cell Death Dis; 2015 Jan; 6(1):e1599. PubMed ID: 25590809 [TBL] [Abstract][Full Text] [Related]
5. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Li LS; Bey EA; Dong Y; Meng J; Patra B; Yan J; Xie XJ; Brekken RA; Barnett CC; Bornmann WG; Gao J; Boothman DA Clin Cancer Res; 2011 Jan; 17(2):275-85. PubMed ID: 21224367 [TBL] [Abstract][Full Text] [Related]
6. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. Silvers MA; Deja S; Singh N; Egnatchik RA; Sudderth J; Luo X; Beg MS; Burgess SC; DeBerardinis RJ; Boothman DA; Merritt ME J Biol Chem; 2017 Nov; 292(44):18203-18216. PubMed ID: 28916726 [TBL] [Abstract][Full Text] [Related]
7. KP372-1-Induced AKT Hyperactivation Blocks DNA Repair to Synergize With PARP Inhibitor Rucaparib Jiang L; Liu Y; Su X; Wang J; Zhao Y; Tumbath S; Kilgore JA; Williams NS; Chen Y; Wang X; Mendonca MS; Lu T; Fu YX; Huang X Front Oncol; 2022; 12():976292. PubMed ID: 36203459 [TBL] [Abstract][Full Text] [Related]
8. Isopentyl-Deoxynboquinone Induces Mitochondrial Dysfunction and G2/M Phase Cell Cycle Arrest to Selectively Kill Jiang L; Liu Y; Tumbath S; Boudreau MW; Chatkewitz LE; Wang J; Su X; Zahid KR; Li K; Chen Y; Yang K; Hergenrother PJ; Huang X Antioxid Redox Signal; 2024 Jul; 41(1-3):74-92. PubMed ID: 37950707 [No Abstract] [Full Text] [Related]
9. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. Huang X; Motea EA; Moore ZR; Yao J; Dong Y; Chakrabarti G; Kilgore JA; Silvers MA; Patidar PL; Cholka A; Fattah F; Cha Y; Anderson GG; Kusko R; Peyton M; Yan J; Xie XJ; Sarode V; Williams NS; Minna JD; Beg M; Gerber DE; Bey EA; Boothman DA Cancer Cell; 2016 Dec; 30(6):940-952. PubMed ID: 27960087 [TBL] [Abstract][Full Text] [Related]
10. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Bey EA; Reinicke KE; Srougi MC; Varnes M; Anderson VE; Pink JJ; Li LS; Patel M; Cao L; Moore Z; Rommel A; Boatman M; Lewis C; Euhus DM; Bornmann WG; Buchsbaum DJ; Spitz DR; Gao J; Boothman DA Mol Cancer Ther; 2013 Oct; 12(10):2110-20. PubMed ID: 23883585 [TBL] [Abstract][Full Text] [Related]
11. SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Zhao Y; Hu Q; Cheng F; Su N; Wang A; Zou Y; Hu H; Chen X; Zhou HM; Huang X; Yang K; Zhu Q; Wang X; Yi J; Zhu L; Qian X; Chen L; Tang Y; Loscalzo J; Yang Y Cell Metab; 2015 May; 21(5):777-89. PubMed ID: 25955212 [TBL] [Abstract][Full Text] [Related]
12. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Bey EA; Bentle MS; Reinicke KE; Dong Y; Yang CR; Girard L; Minna JD; Bornmann WG; Gao J; Boothman DA Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11832-7. PubMed ID: 17609380 [TBL] [Abstract][Full Text] [Related]
13. PCNA inhibition enhances the cytotoxicity of β-lapachone in NQO1-Positive cancer cells by augmentation of oxidative stress-induced DNA damage. Su X; Wang J; Jiang L; Chen Y; Lu T; Mendonca MS; Huang X Cancer Lett; 2021 Oct; 519():304-314. PubMed ID: 34329742 [TBL] [Abstract][Full Text] [Related]
14. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. Beg MS; Huang X; Silvers MA; Gerber DE; Bolluyt J; Sarode V; Fattah F; Deberardinis RJ; Merritt ME; Xie XJ; Leff R; Laheru D; Boothman DA J Surg Oncol; 2017 Jul; 116(1):83-88. PubMed ID: 28346693 [TBL] [Abstract][Full Text] [Related]
15. Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone. Bentle MS; Reinicke KE; Dong Y; Bey EA; Boothman DA Cancer Res; 2007 Jul; 67(14):6936-45. PubMed ID: 17638905 [TBL] [Abstract][Full Text] [Related]
16. X-ray repair cross-complementing protein 1 (XRCC1) loss promotes β-lapachone -induced apoptosis in pancreatic cancer cells. Zheng Y; Zhang H; Guo Y; Chen Y; Chen H; Liu Y BMC Cancer; 2021 Nov; 21(1):1234. PubMed ID: 34789190 [TBL] [Abstract][Full Text] [Related]
17. Discovery of Nonquinone Substrates for NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as Effective Intracellular ROS Generators for the Treatment of Drug-Resistant Non-Small-Cell Lung Cancer. Wu X; Li X; Li Z; Yu Y; You Q; Zhang X J Med Chem; 2018 Dec; 61(24):11280-11297. PubMed ID: 30508483 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. Du J; Daniels DH; Asbury C; Venkataraman S; Liu J; Spitz DR; Oberley LW; Cullen JJ J Biol Chem; 2006 Dec; 281(49):37416-26. PubMed ID: 17040906 [TBL] [Abstract][Full Text] [Related]
19. A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3" chemodynamic therapy on triple negative breast cancer. Zhou L; Chen J; Sun Y; Chai K; Zhu Z; Wang C; Chen M; Han W; Hu X; Li R; Yao T; Li H; Dong C; Shi S J Nanobiotechnology; 2021 Sep; 19(1):261. PubMed ID: 34481495 [TBL] [Abstract][Full Text] [Related]
20. Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Breton CS; Aubry D; Ginet V; Puyal J; Heulot M; Widmann C; Duchosal MA; Nahimana A Biochimie; 2015 Sep; 116():141-53. PubMed ID: 26188110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]