BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33215495)

  • 21. Significant improvement in thermoelectric performance of SnSe/SnS
    Zhang R; Zhou Z; Yao Q; Qi N; Chen Z
    Phys Chem Chem Phys; 2021 Feb; 23(6):3794-3801. PubMed ID: 33533354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance.
    Zheng Z; Su X; Deng R; Stoumpos C; Xie H; Liu W; Yan Y; Hao S; Uher C; Wolverton C; Kanatzidis MG; Tang X
    J Am Chem Soc; 2018 Feb; 140(7):2673-2686. PubMed ID: 29350916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High
    Vankayala RK; Lan TW; Parajuli P; Liu F; Rao R; Yu SH; Hung TL; Lee CH; Yano SI; Hsing CR; Nguyen DL; Chen CL; Bhattacharya S; Chen KH; Ou MN; Rancu O; Rao AM; Chen YY
    Adv Sci (Weinh); 2020 Dec; 7(24):2002494. PubMed ID: 33344133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe.
    Lou X; Li S; Chen X; Zhang Q; Deng H; Zhang J; Li D; Zhang X; Zhang Y; Zeng H; Tang G
    ACS Nano; 2021 May; 15(5):8204-8215. PubMed ID: 33852270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rethinking SnSe Thermoelectrics from Computational Materials Science.
    Bai S; Zhang X; Zhao LD
    Acc Chem Res; 2023 Nov; 56(21):3065-3075. PubMed ID: 37801363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution.
    He X; Zhang H; Nose T; Katase T; Tadano T; Ide K; Ueda S; Hiramatsu H; Hosono H; Kamiya T
    Adv Sci (Weinh); 2022 May; 9(13):e2105958. PubMed ID: 35257520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures.
    Chandra S; Dutta P; Biswas K
    ACS Nano; 2022 Jan; 16(1):7-14. PubMed ID: 34919391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Te Nanoneedles Induced Entanglement and Thermoelectric Improvement of SnSe.
    Ju H; Kim M; Yang J; Kim J
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32492893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe.
    Tsai YF; Wei PC; Chang L; Wang KK; Yang CC; Lai YC; Hsing CR; Wei CM; He J; Snyder GJ; Wu HJ
    Adv Mater; 2021 Jan; 33(1):e2005612. PubMed ID: 33215757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge
    Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals.
    Wei TR; Wu CF; Zhang X; Tan Q; Sun L; Pan Y; Li JF
    Phys Chem Chem Phys; 2015 Nov; 17(44):30102-9. PubMed ID: 26496971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy Doping by Bromine to Improve the Thermoelectric Properties of n-type Polycrystalline SnSe.
    Li S; Wang Y; Chen C; Li X; Xue W; Wang X; Zhang Z; Cao F; Sui J; Liu X; Zhang Q
    Adv Sci (Weinh); 2018 Sep; 5(9):1800598. PubMed ID: 30250800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting Thermoelectric Performance in Epitaxial GeTe Film/Si by Domain Engineering and Point Defect Control.
    Ishibe T; Komatsubara Y; Ishikawa K; Takigawa S; Naruse N; Mera Y; Yamashita Y; Ohishi Y; Nakamura Y
    ACS Appl Mater Interfaces; 2023 May; 15(21):26104-26110. PubMed ID: 37191696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realization of Both n- and p-Type GeTe Thermoelectrics: Electronic Structure Modulation by AgBiSe
    Samanta M; Ghosh T; Arora R; Waghmare UV; Biswas K
    J Am Chem Soc; 2019 Dec; 141(49):19505-19512. PubMed ID: 31735034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study.
    Gu J; Huang L; Liu S
    RSC Adv; 2019 Nov; 9(62):36301-36307. PubMed ID: 35540616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping.
    Li J; Hu Q; He S; Tan X; Deng Q; Zhong Y; Zhang F; Ang R
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37273-37279. PubMed ID: 34319070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials.
    Liu C; Zhang Z; Peng Y; Li F; Miao L; Nishibori E; Chetty R; Bai X; Si R; Gao J; Wang X; Zhu Y; Wang N; Wei H; Mori T
    Sci Adv; 2023 Apr; 9(17):eadh0713. PubMed ID: 37126545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuanced dilute doping strategy enables high-performance GeTe thermoelectrics.
    Zhong J; Yang X; Lyu T; Liang G; Zhang S; Zhang C; Ao W; Liu F; Nan P; Ge B; Hu L
    Sci Bull (Beijing); 2024 Apr; 69(8):1037-1049. PubMed ID: 38431467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doping Copper Selenide for Tuning the Crystal Structure and Thermoelectric Performance of Germanium Telluride-Based Materials.
    Yue L; Bai P; Zheng S
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8327-8335. PubMed ID: 36731875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.