These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33215515)

  • 1. A Sensitive Surface-Enhanced Raman Spectroscopy Method for Detecting Tetracycline in Milk.
    Yang Z; Ma C; Gu J; Wu Y; Zhu C; Li L; Gao H; Zhang Y; Shang Y; Wang C; Chen G
    Appl Spectrosc; 2021 May; 75(5):589-595. PubMed ID: 33215515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS Detection of Benzoic Acid in Milk by Using Ag-COF SERS Substrate.
    Yang Z; Ma C; Gu J; Wu Y; Zhu C; Li L; Gao H; Yin W; Wang Z; Zhang Y; Shang Y; Wang C; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120534. PubMed ID: 34776376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk.
    Dhakal S; Chao K; Huang Q; Kim M; Schmidt W; Qin J; Broadhurst CL
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk.
    Fan R; Tang S; Luo S; Liu H; Zhang W; Yang C; He L; Chen Y
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33187181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Driven 3D Plasmonic Cavity-in-Cavity Surface-Enhanced Raman Scattering Platform with Triple Synergistic Enhancement Toward Label-Free Detection of Antibiotics in Milk.
    Fang G; Lin X; Liang X; Wu J; Xu W; Hasi W; Dong B
    Small; 2022 Nov; 18(45):e2204588. PubMed ID: 36161767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-Based SERS Platform for One-Step Screening of Tetracycline in Milk.
    Marques A; Veigas B; Araújo A; Pagará B; Baptista PV; Águas H; Martins R; Fortunato E
    Sci Rep; 2019 Nov; 9(1):17922. PubMed ID: 31784619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticle-decorated TiO
    Jing M; Zhang H; Li M; Mao Z; Shi X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119652. PubMed ID: 33773431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH
    Qi J; Li J; Wan Y; Li Y; Pi F
    Food Chem; 2024 Mar; 435():137586. PubMed ID: 37774622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.
    Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM
    Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples.
    Qian J; Xing C; Ge Y; Li R; Li A; Yan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 May; 232():118146. PubMed ID: 32086043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering.
    Chen Y; Li X; Yang M; Yang L; Han X; Jiang X; Zhao B
    Talanta; 2017 May; 167():236-241. PubMed ID: 28340716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.
    Li D; Lv DY; Zhu QX; Li H; Chen H; Wu MM; Chai YF; Lu F
    Food Chem; 2017 Jun; 224():382-389. PubMed ID: 28159284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrogen bonding based SERS method for direct label-free L-hydroxyproline detection.
    Yang Z; Chen G; Shen J; Ma C; Gu J; Zhu C; Li L; Gao H
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122834. PubMed ID: 37178585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate.
    Duan N; Shen M; Qi S; Wang W; Wu S; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118103. PubMed ID: 32000058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk.
    Xu Y; Kutsanedzie FYH; Hassan MM; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():405-412. PubMed ID: 30170175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.
    Alyami A; Quinn AJ; Iacopino D
    Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification.
    Li H; Chen Q; Mehedi Hassan M; Chen X; Ouyang Q; Guo Z; Zhao J
    Biosens Bioelectron; 2017 Jun; 92():192-199. PubMed ID: 28214746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles.
    Wu S; Duan N; Shen M; Wang J; Wang Z
    Mikrochim Acta; 2019 Jun; 186(7):401. PubMed ID: 31183576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
    Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S
    Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering-based detection of plasmin activity by specific peptide substrate.
    Yazgan NN; Bulat T; Topcu A; Dudak FC; Boyaci IH; Tamer U
    Food Chem; 2022 Mar; 372():131235. PubMed ID: 34624781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.