BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33215856)

  • 1. Discrete Supertetrahedral Tn Chalcogenido Clusters Synthesized in Ionic Liquids: Crystal Structures and Photocatalytic Activity.
    Peng Y; Hu Q; Liu Y; Li J; Huang X
    Chempluschem; 2020 Nov; 85(11):2487-2498. PubMed ID: 33215856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionothermal Access to Defined Oligomers of Supertetrahedral Selenido Germanate Clusters.
    Wu Z; Nußbruch I; Nier S; Dehnen S
    JACS Au; 2022 Jan; 2(1):204-213. PubMed ID: 35098237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble Supertetrahedral Chalcogenido T4 Clusters: High Stability and Enhanced Hydrogen Evolution Activities.
    Hao M; Hu Q; Zhang Y; Luo M; Wang Y; Hu B; Li J; Huang X
    Inorg Chem; 2019 Apr; 58(8):5126-5133. PubMed ID: 30946583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete Supertetrahedral T5 Selenide Clusters and Their Se/S Solid Solutions: Ionic-Liquid-Assisted Precursor Route Syntheses and Photocatalytic Properties.
    Wang Y; Zhu Z; Sun Z; Hu Q; Li J; Jiang J; Huang X
    Chemistry; 2020 Feb; 26(7):1624-1632. PubMed ID: 31971636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility, and Their Functional Applications.
    Zhang J; Bu X; Feng P; Wu T
    Acc Chem Res; 2020 Oct; 53(10):2261-2272. PubMed ID: 32877164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Largest molecular clusters in the supertetrahedral Tn series.
    Wu T; Wang L; Bu X; Chau V; Feng P
    J Am Chem Soc; 2010 Aug; 132(31):10823-31. PubMed ID: 20681716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids.
    Peters B; Stuhrmann G; Mack F; Weigend F; Dehnen S
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17622-17628. PubMed ID: 33974339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.
    Bu X; Zheng N; Li Y; Feng P
    J Am Chem Soc; 2002 Oct; 124(43):12646-7. PubMed ID: 12392396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superbase route to supertetrahedral chalcogenide clusters.
    Wu T; Bu X; Liao P; Wang L; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2012 Feb; 134(8):3619-22. PubMed ID: 22335388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectively Photocatalytic Activity of an Open-Framework Chalcogenide Built from Corner-Sharing T4 Supertetrahedral Clusters.
    Pei H; Wang L; Zeng MH
    Inorg Chem; 2019 Sep; 58(18):12011-12016. PubMed ID: 31483632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties.
    Yang DD; Li W; Xiong WW; Li JR; Huang XY
    Dalton Trans; 2018 May; 47(17):5977-5984. PubMed ID: 29589630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Discrete Ligand-Free T3 Supertetrahedral Cluster of Gallium Sulfide.
    Makin S; Vaqueiro P
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Expansion of Chalcogenido Tetrelates in Ionic Liquids by Incorporation of Sulfido Antimonate Units.
    Peters B; Krampe C; Klärner J; Dehnen S
    Chemistry; 2020 Dec; 26(70):16683-16689. PubMed ID: 32876359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-Selective Assembly of Supertetrahedral Selenido Germanate Clusters for Alkali Metal Ion Capture and Separation.
    Wu Z; Weigend F; Fenske D; Naumann T; Gottfried JM; Dehnen S
    J Am Chem Soc; 2023 Feb; 145(6):3802-3811. PubMed ID: 36720465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with a Sodalite-Net Loose-Packing Pattern in a Crystal Lattice.
    Xue C; Zhang L; Wang X; Hu D; Wang XL; Zhang J; Zhou R; Li DS; Su H; Wu T
    Inorg Chem; 2020 Nov; 59(21):15587-15594. PubMed ID: 32410454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of inorganic materials using ionic liquids.
    Ma Z; Yu J; Dai S
    Adv Mater; 2010 Jan; 22(2):261-85. PubMed ID: 20217687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy Chalcogenide-Based Ionic Liquids in Syntheses of Metal Chalcogenide Materials near Room Temperature.
    Guschlbauer J; Sundermeyer J
    ChemistryOpen; 2021 Feb; 10(2):92-96. PubMed ID: 33565731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and applications of ionic liquids derived from natural sugars.
    Chiappe C; Marra A; Mele A
    Top Curr Chem; 2010; 295():177-95. PubMed ID: 21626744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Unusual Metal Chalcogenide Zeolitic Framework Built from the Extended Spiro-5 Units with Supertetrahedral Clusters as Nodes.
    Wang W; Wang X; Hu D; Yang H; Xue C; Lin Z; Wu T
    Inorg Chem; 2018 Feb; 57(3):921-925. PubMed ID: 29308887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.
    Łuczak J; Paszkiewicz M; Krukowska A; Malankowska A; Zaleska-Medynska A
    Adv Colloid Interface Sci; 2016 Jan; 227():1-52. PubMed ID: 26520242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.