BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33216372)

  • 1. Functional group changes and chemical bond-dependent dielectric properties of lotus seed flour with microwave vacuum drying.
    Wang W; Zheng B; Tian Y
    J Food Sci; 2020 Dec; 85(12):4241-4248. PubMed ID: 33216372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of starch isolated from microwave heat treated lotus (Nelumbo nucifera) seed flour.
    Nawaz H; Shad MA; Saleem S; Khan MUA; Nishan U; Rasheed T; Bilal M; Iqbal HMN
    Int J Biol Macromol; 2018 Jul; 113():219-226. PubMed ID: 29476856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology.
    Tian Y; Zhang Y; Zeng S; Zheng Y; Chen F; Guo Z; Lin Y; Zheng B
    Food Sci Technol Int; 2012 Oct; 18(5):477-88. PubMed ID: 23144241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.
    Zeng S; Chen B; Zeng H; Guo Z; Lu X; Zhang Y; Zheng B
    J Agric Food Chem; 2016 Mar; 64(12):2442-9. PubMed ID: 26912092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation.
    Wang J; Jiang X; Guo Z; Zheng B; Zhang Y
    Food Chem; 2021 Nov; 361():130171. PubMed ID: 34077884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of γ-radiation on physico-chemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch.
    Punia S; Dhull SB; Kunner P; Rohilla S
    Int J Biol Macromol; 2020 Aug; 157():584-590. PubMed ID: 32344091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction.
    Zhao B; Sun S; Lin H; Chen L; Qin S; Wu W; Zheng B; Guo Z
    Ultrason Sonochem; 2019 Apr; 52():50-61. PubMed ID: 30528211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chlorogenic acid on the structural properties and digestibility of lotus seed starch during microwave gelatinization.
    Jiang X; Wang J; Ou Y; Zheng B
    Int J Biol Macromol; 2021 Nov; 191():474-482. PubMed ID: 34563574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression involved in starch synthesis pathway genes reveal various starch characteristics of seed and rhizome in lotus (Nelumbo Nucifera).
    Zhu F; Sun H; Wang J; Zheng X; Wang T; Diao Y; Hu Z
    J Food Sci; 2022 Sep; 87(9):4250-4263. PubMed ID: 35986703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds.
    Zhao Y; Jiang Y; Zheng B; Zhuang W; Zheng Y; Tian Y
    Food Chem; 2017 Aug; 228():167-176. PubMed ID: 28317710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of microwave vacuum drying and conventional drying methods on the physicochemical and microstructural properties of squid shreds.
    Pankyamma V; Mokam SY; Debbarma J; Rao B M
    J Sci Food Agric; 2019 Oct; 99(13):5778-5783. PubMed ID: 31162679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates.
    Zheng Y; Li Z; Zhang C; Zheng B; Tian Y
    Food Chem; 2020 May; 311():125932. PubMed ID: 31862565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis.
    Lin X; Sun S; Wang B; Zheng B; Guo Z
    Ultrason Sonochem; 2020 Nov; 68():105199. PubMed ID: 32512432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed.
    Sun H; Li J; Song H; Yang D; Deng X; Liu J; Wang Y; Ma J; Xiong Y; Liu Y; Yang M
    BMC Plant Biol; 2020 Oct; 20(1):457. PubMed ID: 33023477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
    Chayjan RA; Alaei B
    Acta Sci Pol Technol Aliment; 2016; 15(2):131-144. PubMed ID: 28071003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch.
    Sun X; Sun Z; Saleh ASM; Lu Y; Zhang X; Ge X; Shen H; Yu X; Li W
    Food Chem; 2023 Mar; 405(Pt A):134837. PubMed ID: 36345103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of lotus seed starch-glycerin monostearin V-complexes after long-term retrogradation.
    Zheng Y; Wang B; Guo Z; Zhang Y; Zheng B; Zeng S; Zeng H
    Food Chem; 2020 May; 311():125887. PubMed ID: 31818515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the chemical qualities and microstructural changes of Lentinula edodes caused by airborne ultrasonic treatment combined with microwave vacuum drying.
    Lei Y; Wang W; Zhang C; Wang D; Zhuang W; Zheng B; Lo YM; Tian Y
    J Food Sci; 2021 Mar; 86(3):667-676. PubMed ID: 33496977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization.
    Guo Z; Zhao B; Chen L; Zheng B
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30754686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microwave vacuum drying on the moisture migration, microstructure, and rehydration of sea cucumber.
    He X; Lin R; Cheng S; Wang S; Yuan L; Wang H; Wang H; Tan M
    J Food Sci; 2021 Jun; 86(6):2499-2512. PubMed ID: 34056720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.