These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33216761)

  • 1. Optimal vehicle size and driving condition for extended-range electric vehicles in China: A life cycle perspective.
    Liu Y; Qiao J; Xu H; Liu J; Chen Y
    PLoS One; 2020; 15(11):e0241967. PubMed ID: 33216761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are electric vehicles really the optimal option for the transportation sector in China to approach pollution reduction and carbon neutrality goals?
    Deng C; Qian Y; Song X; Xie M; Duan H; Shen P; Qiao Q
    J Environ Manage; 2024 Apr; 356():120648. PubMed ID: 38508012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects.
    Gawron JH; Keoleian GA; De Kleine RD; Wallington TJ; Kim HC
    Environ Sci Technol; 2018 Mar; 52(5):3249-3256. PubMed ID: 29446302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficient operating parameter estimation for a simulated plug-in hybrid electric vehicle.
    Singh KV; Khandelwal R; Bansal HO; Singh D
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18126-18141. PubMed ID: 34676482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.
    Holmén BA; Sentoff KM
    Environ Sci Technol; 2015 Aug; 49(16):10199-208. PubMed ID: 26171922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect Carbon Emissions and Energy Consumption Model for Electric Vehicles: Indian Scenario.
    Kurien C; Srivastava AK; Molere E
    Integr Environ Assess Manag; 2020 Nov; 16(6):998-1007. PubMed ID: 32543043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
    Raykin L; MacLean HL; Roorda MJ
    Environ Sci Technol; 2012 Jun; 46(11):6363-70. PubMed ID: 22568681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions.
    Zhao X; Ye Y; Ma J; Shi P; Chen H
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37395-37409. PubMed ID: 32394253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing an electric vehicle urban driving cycle to study differences in energy consumption.
    Zhao X; Ma J; Wang S; Ye Y; Wu Y; Yu M
    Environ Sci Pollut Res Int; 2019 May; 26(14):13839-13853. PubMed ID: 30406590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.
    Cox B; Mutel CL; Bauer C; Mendoza Beltran A; van Vuuren DP
    Environ Sci Technol; 2018 Apr; 52(8):4989-4995. PubMed ID: 29570287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle CO
    Yu R; Cong L; Hui Y; Zhao D; Yu B
    Sci Total Environ; 2022 Jun; 826():154102. PubMed ID: 35218846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Energy Conservation and Emissions Reduction Benefits Analysis for Battery Electric Buses Based on Travel Services].
    Lin XD; Tian L; Lü B; Yang JX
    Huan Jing Ke Xue; 2015 Sep; 36(9):3515-21. PubMed ID: 26717718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of autonomous driving state control of low energy consumption pure electric agricultural vehicles based on environmental friendliness.
    Zhou X; Zhou J
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48767-48784. PubMed ID: 33928505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.