These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33216847)

  • 1. Function of mammalian M-cones depends on the level of CRALBP in Müller cells.
    Kolesnikov AV; Kiser PD; Palczewski K; Kefalov VJ
    J Gen Physiol; 2021 Jan; 153(1):. PubMed ID: 33216847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S; Kefalov VJ
    J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominant role for pigment epithelial CRALBP in supplying visual chromophore to photoreceptors.
    Bassetto M; Kolesnikov AV; Lewandowski D; Kiser JZ; Halabi M; Einstein DE; Choi EH; Palczewski K; Kefalov VJ; Kiser PD
    Cell Rep; 2024 May; 43(5):114143. PubMed ID: 38676924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRALBP supports the mammalian retinal visual cycle and cone vision.
    Xue Y; Shen SQ; Jui J; Rupp AC; Byrne LC; Hattar S; Flannery JG; Corbo JC; Kefalov VJ
    J Clin Invest; 2015 Feb; 125(2):727-38. PubMed ID: 25607845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cone-specific visual cycle.
    Wang JS; Kefalov VJ
    Prog Retin Eye Res; 2011 Mar; 30(2):115-28. PubMed ID: 21111842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein.
    Kolesnikov AV; Tang PH; Parker RO; Crouch RK; Kefalov VJ
    J Neurosci; 2011 May; 31(21):7900-9. PubMed ID: 21613504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina.
    Fleisch VC; Schonthaler HB; von Lintig J; Neuhauss SC
    J Neurosci; 2008 Aug; 28(33):8208-16. PubMed ID: 18701683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Muller-CRALBP in cone vision.
    Collery R; McLoughlin S; Vendrell V; Finnegan J; Crabb JW; Saari JC; Kennedy BN
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3812-20. PubMed ID: 18502992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina.
    Widjaja-Adhi MAK; Kolesnikov AV; Vasudevan S; Park PS; Kefalov VJ; Golczak M
    FASEB J; 2022 Jul; 36(7):e22390. PubMed ID: 35665537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-retinal visual cycle required for rapid and complete cone dark adaptation.
    Wang JS; Estevez ME; Cornwall MC; Kefalov VJ
    Nat Neurosci; 2009 Mar; 12(3):295-302. PubMed ID: 19182795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
    Sato S; Frederiksen R; Cornwall MC; Kefalov VJ
    Vis Neurosci; 2017 Jan; 34():E004. PubMed ID: 28359344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of retinol dehydrogenase 10 in the cone visual cycle.
    Xue Y; Sato S; Razafsky D; Sahu B; Shen SQ; Potter C; Sandell LL; Corbo JC; Palczewski K; Maeda A; Hodzic D; Kefalov VJ
    Sci Rep; 2017 May; 7(1):2390. PubMed ID: 28539612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbed retinoid metabolism upon loss of
    Schlegel DK; Ramkumar S; von Lintig J; Neuhauss SC
    Elife; 2021 Oct; 10():. PubMed ID: 34668483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle.
    Zhao X; Pack W; Khan NW; Wong KY
    J Neurosci; 2016 Apr; 36(15):4209-17. PubMed ID: 27076420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of deficiency in the
    Lima de Carvalho JR; Kim HJ; Ueda K; Zhao J; Owji AP; Yang T; Tsang SH; Sparrow JR
    J Biol Chem; 2020 May; 295(19):6767-6780. PubMed ID: 32188692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative pathway mediates the mouse and human cone visual cycle.
    Wang JS; Kefalov VJ
    Curr Biol; 2009 Oct; 19(19):1665-9. PubMed ID: 19781940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore supply rate-limits mammalian photoreceptor dark adaptation.
    Wang JS; Nymark S; Frederiksen R; Estevez ME; Shen SQ; Corbo JC; Cornwall MC; Kefalov VJ
    J Neurosci; 2014 Aug; 34(34):11212-21. PubMed ID: 25143602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged Melanopsin-based Photoresponses Depend in Part on RPE65 and Cellular Retinaldehyde-binding Protein (CRALBP).
    Harrison KR; Reifler AN; Chervenak AP; Wong KY
    Curr Eye Res; 2021 Apr; 46(4):515-523. PubMed ID: 32841098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones.
    Kiser PD; Kolesnikov AV; Kiser JZ; Dong Z; Chaurasia B; Wang L; Summers SA; Hoang T; Blackshaw S; Peachey NS; Kefalov VJ; Palczewski K
    FASEB J; 2019 Apr; 33(4):5782-5792. PubMed ID: 30645148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.