BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33217085)

  • 1. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families.
    Liu H; Lyu HM; Zhu K; Van de Peer Y; Max Cheng ZM
    Plant J; 2021 Feb; 105(4):1072-1082. PubMed ID: 33217085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of intronless genes in rice and Arabidopsis.
    Jain M; Khurana P; Tyagi AK; Khurana JP
    Funct Integr Genomics; 2008 Feb; 8(1):69-78. PubMed ID: 17578610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes.
    Zhang C; Gschwend AR; Ouyang Y; Long M
    Plant Physiol; 2014 May; 165(1):412-23. PubMed ID: 24520158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of intron-poor clades and expression patterns of the glycosyltransferase family 47.
    Tan J; Miao Z; Ren C; Yuan R; Tang Y; Zhang X; Han Z; Ma C
    Planta; 2018 Mar; 247(3):745-760. PubMed ID: 29196940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 5' leader of plant PgiC has an intron: the leader shows both the loss and maintenance of constraints compared with introns and exons in the coding region.
    Gottlieb LD; Ford VS
    Mol Biol Evol; 2002 Sep; 19(9):1613-23. PubMed ID: 12200488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes.
    Speth C; Szabo EX; Martinho C; Collani S; Zur Oven-Krockhaus S; Richter S; Droste-Borel I; Macek B; Stierhof YD; Schmid M; Liu C; Laubinger S
    Elife; 2018 Aug; 7():. PubMed ID: 30152752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron splicing suppresses RNA silencing in Arabidopsis.
    Christie M; Croft LJ; Carroll BJ
    Plant J; 2011 Oct; 68(1):159-67. PubMed ID: 21689169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel loss of introns in the ABCB1 gene in angiosperms.
    Parvathaneni RK; DeLeo VL; Spiekerman JJ; Chakraborty D; Devos KM
    BMC Evol Biol; 2017 Dec; 17(1):238. PubMed ID: 29202710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut.
    Wang Z; Yan L; Wan L; Huai D; Kang Y; Shi L; Jiang H; Lei Y; Liao B
    BMC Genomics; 2019 Jan; 20(1):51. PubMed ID: 30651065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.
    Chang YL; Li WY; Miao H; Yang SQ; Li R; Wang X; Li WQ; Chen KM
    Genome Biol Evol; 2016 Feb; 8(3):791-810. PubMed ID: 26907500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).
    Nguyen Dinh S; Sai TZT; Nawaz G; Lee K; Kang H
    J Plant Physiol; 2016 Aug; 201():85-94. PubMed ID: 27448724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and evolution of spliceosomal introns.
    Rogozin IB; Carmel L; Csuros M; Koonin EV
    Biol Direct; 2012 Apr; 7():11. PubMed ID: 22507701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana.
    Emami S; Arumainayagam D; Korf I; Rose AB
    Plant Biotechnol J; 2013 Jun; 11(5):555-63. PubMed ID: 23347383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants.
    Li W; Liu B; Yu L; Feng D; Wang H; Wang J
    BMC Evol Biol; 2009 May; 9():90. PubMed ID: 19416520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: Insights into the origin and evolution of type I IFNs in vertebrates.
    Gan Z; Chen SN; Huang B; Hou J; Nie P
    Dev Comp Immunol; 2017 Feb; 67():166-176. PubMed ID: 27780747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family.
    Zhang S; Chen C; Li L; Meng L; Singh J; Jiang N; Deng XW; He ZH; Lemaux PG
    Plant Physiol; 2005 Nov; 139(3):1107-24. PubMed ID: 16286450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.
    Chen L; Hu W; Tan S; Wang M; Ma Z; Zhou S; Deng X; Zhang Y; Huang C; Yang G; He G
    PLoS One; 2012; 7(10):e46744. PubMed ID: 23082129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.