BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33217309)

  • 1. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl
    Polovitskaya MM; Barbini C; Martinelli D; Harms FL; Cole FS; Calligari P; Bocchinfuso G; Stella L; Ciolfi A; Niceta M; Rizza T; Shinawi M; Sisco K; Johannsen J; Denecke J; Carrozzo R; Wegner DJ; Kutsche K; Tartaglia M; Jentsch TJ
    Am J Hum Genet; 2020 Dec; 107(6):1062-1077. PubMed ID: 33217309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction.
    He H; Cao X; Yin F; Wu T; Stauber T; Peng J
    Mol Neurobiol; 2021 Jun; 58(6):2990-2999. PubMed ID: 33590434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration.
    Weinert S; Gimber N; Deuschel D; Stuhlmann T; Puchkov D; Farsi Z; Ludwig CF; Novarino G; López-Cayuqueo KI; Planells-Cases R; Jentsch TJ
    EMBO J; 2020 May; 39(9):e103358. PubMed ID: 32118314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct ClC-6 and ClC-7 Cl
    Coppola MA; Gavazzo P; Zanardi I; Tettey-Matey A; Liantonio A; Fong P; Pusch M
    J Physiol; 2023 Dec; 601(24):5635-5653. PubMed ID: 37937509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Case report: ocular manifestations of a gain-of-function mutation in
    Kimera L; Nadimpalli S; Kurup S; Cole FS; Huang R; Sisco K; Ranaivo HR; Shinawi M; Dickson P; Mian A; Reynolds M; Undiagnosed Diseases Network
    Ophthalmic Genet; 2023 Dec; ():1-4. PubMed ID: 38095064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation.
    Hara-Chikuma M; Yang B; Sonawane ND; Sasaki S; Uchida S; Verkman AS
    J Biol Chem; 2005 Jan; 280(2):1241-7. PubMed ID: 15504734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl
    Bose S; de Heus C; Kennedy ME; Wang F; Jentsch TJ; Klumperman J; Stauber T
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger.
    Smith AJ; Lippiat JD
    J Physiol; 2010 Jun; 588(Pt 12):2033-45. PubMed ID: 20421284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.
    Poët M; Kornak U; Schweizer M; Zdebik AA; Scheel O; Hoelter S; Wurst W; Schmitt A; Fuhrmann JC; Planells-Cases R; Mole SE; Hübner CA; Jentsch TJ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13854-9. PubMed ID: 16950870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered voltage-dependence of slowly activating chloride-proton antiport by late endosomal ClC-6 explains distinct neurological disorders.
    Zifarelli G; Pusch M; Fong P
    J Physiol; 2022 May; 600(9):2147-2164. PubMed ID: 35262198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters.
    Bose S; He H; Stauber T
    Front Cell Dev Biol; 2021; 9():639231. PubMed ID: 33708769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cl
    Chang MH; Brown MR; Liu Y; Gainullin VG; Harris PC; Romero MF; Lieske JC
    J Biol Chem; 2020 Feb; 295(6):1464-1473. PubMed ID: 31852738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
    Jentsch TJ
    J Physiol; 2007 Feb; 578(Pt 3):633-40. PubMed ID: 17110406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.
    Neagoe I; Stauber T; Fidzinski P; Bergsdorf EY; Jentsch TJ
    J Biol Chem; 2010 Jul; 285(28):21689-97. PubMed ID: 20466723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.
    Jentsch TJ; Pusch M
    Physiol Rev; 2018 Jul; 98(3):1493-1590. PubMed ID: 29845874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification.
    Nicoli ER; Weston MR; Hackbarth M; Becerril A; Larson A; Zein WM; Baker PR; Burke JD; Dorward H; Davids M; Huang Y; Adams DR; Zerfas PM; Chen D; Markello TC; Toro C; Wood T; Elliott G; Vu M; ; Zheng W; Garrett LJ; Tifft CJ; Gahl WA; Day-Salvatore DL; Mindell JA; Malicdan MCV
    Am J Hum Genet; 2019 Jun; 104(6):1127-1138. PubMed ID: 31155284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells.
    Li X; Wang T; Zhao Z; Weinman SA
    Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1483-91. PubMed ID: 11997263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of ClC-6 function and its impairment in human disease.
    Zhang B; Zhang S; Polovitskaya MM; Yi J; Ye B; Li R; Huang X; Yin J; Neuens S; Balfroid T; Soblet J; Vens D; Aeby A; Li X; Cai J; Song Y; Li Y; Tartaglia M; Li Y; Jentsch TJ; Yang M; Liu Z
    Sci Adv; 2023 Oct; 9(41):eadg4479. PubMed ID: 37831762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.