These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33217333)

  • 1. Next-Generation Lineage Tracing and Fate Mapping to Interrogate Development.
    VanHorn S; Morris SA
    Dev Cell; 2021 Jan; 56(1):7-21. PubMed ID: 33217333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current approaches to fate mapping and lineage tracing using image data.
    Wolf S; Wan Y; McDole K
    Development; 2021 Sep; 148(18):. PubMed ID: 34498046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development.
    Peng G; Cui G; Ke J; Jing N
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():163-181. PubMed ID: 32339035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices.
    Yao M; Ren T; Pan Y; Xue X; Li R; Zhang L; Li Y; Huang K
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using single-cell genomics to understand developmental processes and cell fate decisions.
    Griffiths JA; Scialdone A; Marioni JC
    Mol Syst Biol; 2018 Apr; 14(4):e8046. PubMed ID: 29661792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recording of mammalian embryogenesis.
    Chan MM; Smith ZD; Grosswendt S; Kretzmer H; Norman TM; Adamson B; Jost M; Quinn JJ; Yang D; Jones MG; Khodaverdian A; Yosef N; Meissner A; Weissman JS
    Nature; 2019 Jun; 570(7759):77-82. PubMed ID: 31086336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating Lineage Trajectory Maps Via Integration of Single-Cell RNA-Sequencing and Lineage Tracing: Integrating transgenic lineage tracing and single-cell RNA-sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes.
    Fletcher RB; Das D; Ngai J
    Bioessays; 2018 Aug; 40(8):e1800056. PubMed ID: 29944188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage tracing meets single-cell omics: opportunities and challenges.
    Wagner DE; Klein AM
    Nat Rev Genet; 2020 Jul; 21(7):410-427. PubMed ID: 32235876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When Family History Matters: The Importance of Lineage Analyses and Fate Maps for Explaining Animal Development.
    Klein SL; Moody SA
    Curr Top Dev Biol; 2016; 117():93-112. PubMed ID: 26969974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information.
    Wang SW; Herriges MJ; Hurley K; Kotton DN; Klein AM
    Nat Biotechnol; 2022 Jul; 40(7):1066-1074. PubMed ID: 35190690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Fate Determination from Embryo to Cancer Development: Genomic Mechanism Elucidated.
    Tsuchiya M; Giuliani A; Yoshikawa K
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32605138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell Transcriptomics Meets Lineage Tracing.
    Kester L; van Oudenaarden A
    Cell Stem Cell; 2018 Aug; 23(2):166-179. PubMed ID: 29754780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.
    Treutlein B; Brownfield DG; Wu AR; Neff NF; Mantalas GL; Espinoza FH; Desai TJ; Krasnow MA; Quake SR
    Nature; 2014 May; 509(7500):371-5. PubMed ID: 24739965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making.
    Haghverdi L; Ludwig LS
    Stem Cell Reports; 2023 Jan; 18(1):13-25. PubMed ID: 36630900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essentials of recombinase-based genetic fate mapping in mice.
    Jensen P; Dymecki SM
    Methods Mol Biol; 2014; 1092():437-54. PubMed ID: 24318835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lineage Tracing by Single-Cell Transcriptomics Decoding Dynamics of Lineage Commitment.
    Yu P; Cheng L
    Methods Mol Biol; 2024; 2736():1-7. PubMed ID: 36749487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concepts of Cell Lineage in Mammalian Embryos.
    Papaioannou VE
    Curr Top Dev Biol; 2016; 117():185-97. PubMed ID: 26969978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling cellular relationships during development and regeneration using genetic lineage tracing.
    Baron CS; van Oudenaarden A
    Nat Rev Mol Cell Biol; 2019 Dec; 20(12):753-765. PubMed ID: 31690888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling early embryo development using single cell genomics.
    Alberio R
    Theriogenology; 2020 Jul; 150():55-58. PubMed ID: 32088040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.