These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33217385)

  • 1. Corrected Super-Resolution Microscopy Enables Nanoscale Imaging of Autofluorescent Lung Macrophages.
    Ambrose AR; Dechantsreiter S; Shah R; Montero MA; Quinn AM; Hessel EM; Beinke S; Tannahill GM; Davis DM
    Biophys J; 2020 Dec; 119(12):2403-2417. PubMed ID: 33217385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
    Huang B; Wang W; Bates M; Zhuang X
    Science; 2008 Feb; 319(5864):810-3. PubMed ID: 18174397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells.
    Li M; Liu L; Xi N; Wang Y; Xiao X; Zhang W
    Langmuir; 2014 Feb; 30(6):1609-21. PubMed ID: 24495237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy.
    Yoon J; Comerci CJ; Weiss LE; Milenkovic L; Stearns T; Moerner WE
    Biophys J; 2019 Jan; 116(2):319-329. PubMed ID: 30598282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of differential Toll-like receptor responses below the optical diffraction limit.
    Aaron JS; Carson BD; Timlin JA
    Small; 2012 Oct; 8(19):3041-9. PubMed ID: 22807232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain.
    Codron P; Letournel F; Marty S; Renaud L; Bodin A; Duchesne M; Verny C; Lenaers G; Duyckaerts C; Julien JP; Cassereau J; Chevrollier A
    Neuropathol Appl Neurobiol; 2021 Feb; 47(1):127-142. PubMed ID: 32688444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive accumulation of autofluorescent granules in macrophages in rat striatum after systemic 3-nitropropionic acid: a correlative light- and electron-microscopic study.
    Riew TR; Kim HL; Choi JH; Jin X; Shin YJ; Lee MY
    Histochem Cell Biol; 2017 Nov; 148(5):517-528. PubMed ID: 28597061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight nanoscale clustering of Fcγ receptors using DNA origami promotes phagocytosis.
    Kern N; Dong R; Douglas SM; Vale RD; Morrissey MA
    Elife; 2021 Jun; 10():. PubMed ID: 34080973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial super-resolution evanescent wave tomography.
    Pendharker S; Shende S; Newman W; Ogg S; Nazemifard N; Jacob Z
    Opt Lett; 2016 Dec; 41(23):5499-5502. PubMed ID: 27906223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Super-Resolution Microscopy to Assess Adhesion of Neuronal Cells on Single-Layer Graphene Substrates.
    Scalisi S; Pennacchietti F; Keshavan S; Derr ND; Diaspro A; Pisignano D; Pierzynska-Mach A; Dante S; Cella Zanacchi F
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.
    Tam J; Merino D
    J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated STORM-homoFRET imaging reveals highly heterogeneous membrane receptor structures.
    Driouchi A; Gray-Owen SD; Yip CM
    J Biol Chem; 2022 Oct; 298(10):102448. PubMed ID: 36063991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic platform for correlative live-cell and super-resolution microscopy.
    Tam J; Cordier GA; Bálint Š; Sandoval Álvarez Á; Borbely JS; Lakadamyali M
    PLoS One; 2014; 9(12):e115512. PubMed ID: 25545548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking.
    Andrian T; Bakkum T; van Elsland DM; Bos E; Koster AJ; Albertazzi L; van Kasteren SI; Pujals S
    Methods Cell Biol; 2021; 162():303-331. PubMed ID: 33707017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicolor super-resolution imaging with photo-switchable fluorescent probes.
    Bates M; Huang B; Dempsey GT; Zhuang X
    Science; 2007 Sep; 317(5845):1749-53. PubMed ID: 17702910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding.
    Yuan Y; Jacobs CA; Llorente Garcia I; Pereira PM; Lawrence SP; Laine RF; Marsh M; Henriques R
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33478139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric, Nanoscale Optical Imaging of Mouse and Human Kidney via Expansion Microscopy.
    Chozinski TJ; Mao C; Halpern AR; Pippin JW; Shankland SJ; Alpers CE; Najafian B; Vaughan JC
    Sci Rep; 2018 Jul; 8(1):10396. PubMed ID: 29991751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer three-dimensional super resolution imaging of thick biological samples.
    Vaziri A; Tang J; Shroff H; Shank CV
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20221-6. PubMed ID: 19088193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-Resolution Fluorescence Microscopy for Single Cell Imaging.
    Feng H; Wang X; Xu Z; Zhang X; Gao Y
    Adv Exp Med Biol; 2018; 1068():59-71. PubMed ID: 29943296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.