These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33217434)

  • 41. Stable and recyclable Fe
    Guo C; Chen C; Lu J; Fu D; Yuan CZ; Wu XL; Hui KN; Chen J
    J Colloid Interface Sci; 2021 Oct; 599():219-226. PubMed ID: 33945969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis.
    Gao Y; Li T; Zhu Y; Chen Z; Liang J; Zeng Q; Lyu L; Hu C
    J Hazard Mater; 2020 Jul; 393():121280. PubMed ID: 32120204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering single-atom Fe-Pyridine N
    Xu X; Zhan F; Pan J; Zhou L; Su L; Cen W; Li W; Tian C
    Chemosphere; 2022 May; 294():133735. PubMed ID: 35085615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of iron-dipicolinamide catalyst with Fe-N bonds for enhancing non-radical reactive species under alkaline Fenton process.
    Jin Q; Chen Q; Kang J; Shen J; Guo F; Chen Z
    Chemosphere; 2020 Feb; 241():125005. PubMed ID: 31605994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced heterogeneous Fenton-like degradation of refractory organic contaminants over Cu doped (Mg,Ni)(Fe,Al)
    Han X; Gou L; Tang S; Cheng F; Zhang M; Guo M
    J Environ Manage; 2021 Apr; 283():111941. PubMed ID: 33503513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial engineering of vacancy-rich nitrogen-doped Fe
    Ye J; Dai J; Yang D; Li C; Yan Y; Wang Y
    J Hazard Mater; 2022 Jan; 421():126715. PubMed ID: 34332488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH.
    Zhou H; Wu S; Zhou Y; Yang Y; Zhang J; Luo L; Duan X; Wang S; Wang L; Tsang DCW
    Environ Int; 2019 Jul; 128():77-88. PubMed ID: 31029982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation.
    Hu P; Su H; Chen Z; Yu C; Li Q; Zhou B; Alvarez PJJ; Long M
    Environ Sci Technol; 2017 Oct; 51(19):11288-11296. PubMed ID: 28858502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe
    Guo S; Liu M; You L; Cheng G; Li J; Zhou K
    Chemosphere; 2021 Sep; 279():130482. PubMed ID: 33865164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Promotional effect of Ca doping on Bi
    Koo PL; Choong ZY; Gasim MF; Khoerunnisa F; Jaafar NF; Saputra E; Oh WD
    Chemosphere; 2022 Nov; 307(Pt 1):135619. PubMed ID: 35835247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fe@C activated peroxymonosulfate system for effectively degrading emerging contaminants: Analysis of the formation and activation mechanism of Fe coordinately unsaturated metal sites.
    Chi H; Wan J; Zhou X; Sun J; Yan B
    J Hazard Mater; 2021 Oct; 419():126535. PubMed ID: 34218190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elucidating the Mechanistic Origin of a Spin State-Dependent FeN
    Zhang B; Li X; Akiyama K; Bingham PA; Kubuki S
    Environ Sci Technol; 2022 Jan; 56(2):1321-1330. PubMed ID: 34939799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Fe
    Yan Y; Zhang H; Wang W; Li W; Ren Y; Li X
    J Hazard Mater; 2021 Jun; 411():124952. PubMed ID: 33440280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Markedly boosted peroxymonosulfate- and periodate-based Fenton-like activities of iron clusters on sulfur/nitrogen codoped carbon: Key roles of a sulfur dopant and compared activation mechanisms.
    Long Y; Huang S; Sun J; Peng D; Zhang Z
    Sci Total Environ; 2023 Jan; 855():158752. PubMed ID: 36108861
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peroxymonosulfate activation by graphene oxide-supported 3D-MoS
    Huang C; Liu H; Sun C; Wang P; Tian Z; Cheng H; Huang S; Yang X; Wang M; Liu Z
    Environ Pollut; 2023 May; 325():121391. PubMed ID: 36871747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient removal of organic pollutants by a Co/N/S-doped yolk-shell carbon catalyst via peroxymonosulfate activation.
    Zhang X; Yan X; Hu X; Feng R; Zhou M; Wang L
    J Hazard Mater; 2022 Jan; 421():126726. PubMed ID: 34330079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boosting peroxymonosulfate activation by iron-based dual active site for efficient sulfamethoxazole degradation: synergism of Fe and N-doped carbon.
    Fan X; Liu N; Yang J; Yu Y; Xu Y; Song C; Liu Y
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):71088-71102. PubMed ID: 37156954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Boosting electron transport process over multiple channels induced by S-doped carbon and Fe
    Zhang X; Wang J; Wang Y; Yao Z; Guo W; Xu H; Jiang Z
    J Hazard Mater; 2023 Jan; 442():130115. PubMed ID: 36303349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorus-doped carbon fibers as an efficient metal-free bifunctional catalyst for removing sulfamethoxazole and chromium (VI).
    Liu X; Rao L; Yao Y; Chen H
    Chemosphere; 2020 May; 246():125783. PubMed ID: 31918096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe
    Wang J; Liu C; Qi J; Li J; Sun X; Shen J; Han W; Wang L
    Environ Pollut; 2018 Dec; 243(Pt B):1068-1077. PubMed ID: 30253297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.