BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33217531)

  • 1. A rat subchronic study transcriptional point of departure estimates a carcinogenicity study apical point of departure.
    Bianchi E; Costa E; Yan ZJ; Murphy L; Howell J; Anderson D; Mukerji P; Venkatraman A; Terry C; Johnson KJ
    Food Chem Toxicol; 2021 Jan; 147():111869. PubMed ID: 33217531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure.
    Johnson KJ; Auerbach SS; Costa E
    Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term toxicogenomics as an alternative approach to chronic in vivo studies for derivation of points of departure: A case study in the rat with a triazole fungicide.
    LaRocca J; Costa E; Sriram S; Hannas BR; Johnson KJ
    Regul Toxicol Pharmacol; 2020 Jun; 113():104655. PubMed ID: 32268158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment.
    Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL
    Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of carcinogenicity predictors from short-term and sub chronic repeat-dose studies of agrochemicals in rats: Opportunities to refine and reduce animal use.
    Mistry P; McInnes EF; Beevers C; Wolf D; Currie RA; Salimraj R; Parsons P
    Toxicol Lett; 2021 Oct; 351():18-27. PubMed ID: 34364947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model.
    Johnson KJ; Costa E; Marshall V; Sriram S; Venkatraman A; Stebbins K; LaRocca J
    Birth Defects Res; 2022 Jul; 114(11):559-576. PubMed ID: 35596682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing human carcinogenicity risk of agrochemicals without the rodent cancer bioassay.
    Goetz A; Ryan N; Sauve-Ciencewicki A; Lord CC; Hilton GM; Wolf DC
    Front Toxicol; 2024; 6():1394361. PubMed ID: 38933090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking chronic toxicity and carcinogenicity assessment for agrochemicals project (ReCAAP): A reporting framework to support a weight of evidence safety assessment without long-term rodent bioassays.
    Hilton GM; Adcock C; Akerman G; Baldassari J; Battalora M; Casey W; Clippinger AJ; Cope R; Goetz A; Hayes AW; Papineni S; Peffer RC; Ramsingh D; Williamson Riffle B; Sanches da Rocha M; Ryan N; Scollon E; Visconti N; Wolf DC; Yan Z; Lowit A
    Regul Toxicol Pharmacol; 2022 Jun; 131():105160. PubMed ID: 35311659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD).
    Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL
    PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards achieving a modern science-based paradigm for agrochemical carcinogenicity assessment.
    Hilton GM; Corvi R; Luijten M; Mehta J; Wolf DC
    Regul Toxicol Pharmacol; 2023 Jan; 137():105301. PubMed ID: 36436696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment.
    Thomas RS; Wesselkamper SC; Wang NC; Zhao QJ; Petersen DD; Lambert JC; Cote I; Yang L; Healy E; Black MB; Clewell HJ; Allen BC; Andersen ME
    Toxicol Sci; 2013 Jul; 134(1):180-94. PubMed ID: 23596260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals.
    Heusinkveld H; Braakhuis H; Gommans R; Botham P; Corvaro M; van der Laan JW; Lewis D; Madia F; Manou I; Schorsch F; Wolterink G; Woutersen R; Corvi R; Mehta J; Luijten M
    Crit Rev Toxicol; 2020 Oct; 50(9):725-739. PubMed ID: 33236972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment.
    Thomas RS; Clewell HJ; Allen BC; Wesselkamper SC; Wang NC; Lambert JC; Hess-Wilson JK; Zhao QJ; Andersen ME
    Toxicol Sci; 2011 Mar; 120(1):194-205. PubMed ID: 21097997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 5-day In Vivo Rat Liver and Kidney With High-throughput Transcriptomics for Estimating Benchmark Doses of Apical Outcomes.
    Gwinn WM; Auerbach SS; Parham F; Stout MD; Waidyanatha S; Mutlu E; Collins B; Paules RS; Merrick BA; Ferguson S; Ramaiahgari S; Bucher JR; Sparrow B; Toy H; Gorospe J; Machesky N; Shah RR; Balik-Meisner MR; Mav D; Phadke DP; Roberts G; DeVito MJ
    Toxicol Sci; 2020 Aug; 176(2):343-354. PubMed ID: 32492150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop.
    Felter SP; Bhat VS; Botham PA; Bussard DA; Casey W; Hayes AW; Hilton GM; Magurany KA; Sauer UG; Ohanian EV
    Crit Rev Toxicol; 2021 Sep; 51(8):653-694. PubMed ID: 35239444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens.
    Bercu JP; Jolly RA; Flagella KM; Baker TK; Romero P; Stevens JL
    Regul Toxicol Pharmacol; 2010 Dec; 58(3):369-81. PubMed ID: 20801182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats.
    Dong H; Gill S; Curran IH; Williams A; Kuo B; Wade MG; Yauk CL
    Arch Toxicol; 2016 Jun; 90(6):1351-67. PubMed ID: 26194646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice.
    Bhat VS; Hester SD; Nesnow S; Eastmond DA
    Toxicol Sci; 2013 Nov; 136(1):205-15. PubMed ID: 23970803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.