These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33217543)

  • 21. Double matrix completion for circRNA-disease association prediction.
    Zuo ZL; Cao RF; Wei PJ; Xia JF; Zheng CH
    BMC Bioinformatics; 2021 Jun; 22(1):307. PubMed ID: 34103016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder.
    Turgut H; Turanli B; Boz B
    Interdiscip Sci; 2024 Mar; 16(1):91-103. PubMed ID: 37978116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XGBCDA: a multiple heterogeneous networks-based method for predicting circRNA-disease associations.
    Shen S; Liu J; Zhou C; Qian Y; Deng L
    BMC Med Genomics; 2022 Nov; 13(Suppl 1):196. PubMed ID: 36329528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning.
    Xiao Q; Fu Y; Yang Y; Dai J; Luo J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations.
    Xiao Q; Yu H; Zhong J; Liang C; Li G; Ding P; Luo J
    Genomics; 2020 Sep; 112(5):3407-3415. PubMed ID: 32561349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
    Wang L; Yan X; You ZH; Zhou X; Li HY; Huang YA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33734296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association.
    Lei X; Bian C
    Sci Rep; 2020 Feb; 10(1):1943. PubMed ID: 32029856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GEHGAN: CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network.
    Wang Y; Lu P
    Comput Biol Chem; 2024 Jun; 110():108079. PubMed ID: 38704917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network.
    Ma Z; Kuang Z; Deng L
    BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations.
    Deng L; Zhang W; Shi Y; Tang Y
    Sci Rep; 2019 Jul; 9(1):9605. PubMed ID: 31270357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.
    Chen L; Zhao X
    Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.