BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33217746)

  • 1. The effect of catalytic copper pretreatments on CVD graphene growth at different stages.
    Li N; Zhang RJ; Zhen Z; Xu ZH; Mu RD; He LM
    Nanotechnology; 2021 Feb; 32(9):095607. PubMed ID: 33217746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.
    Chang RJ; Lee CH; Lee MK; Chen CW; Wen CY
    Nanoscale; 2017 Feb; 9(6):2324-2329. PubMed ID: 28134390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging.
    Braeuninger-Weimer P; Brennan B; Pollard AJ; Hofmann S
    Chem Mater; 2016 Dec; 28(24):8905-8915. PubMed ID: 28133416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-Vapor-Assisted Growth and Defect-Healing of Graphene on Copper Surfaces.
    Lee HC; Bong H; Yoo MS; Jo M; Cho K
    Small; 2018 Jul; 14(30):e1801181. PubMed ID: 29966039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing graphene growth on Cu(111) versus oxidized Cu(111).
    Gottardi S; Müller K; Bignardi L; Moreno-López JC; Pham TA; Ivashenko O; Yablonskikh M; Barinov A; Björk J; Rudolf P; Stöhr M
    Nano Lett; 2015 Feb; 15(2):917-22. PubMed ID: 25611528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of graphene grain boundaries on Cu(100) surface and a route towards their elimination in chemical vapor deposition growth.
    Yuan Q; Song G; Sun D; Ding F
    Sci Rep; 2014 Oct; 4():6541. PubMed ID: 25286970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates.
    Zhu Y; Zhang J; Cheng T; Tang J; Duan H; Hu Z; Shao J; Wang S; Wei M; Wu H; Li A; Li S; Balci O; Shinde SM; Ramezani H; Wang L; Lin L; Ferrari AC; Yakobson BI; Peng H; Jia K; Liu Z
    Adv Mater; 2024 Apr; 36(17):e2308802. PubMed ID: 37878366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the number of layers in graphene using the growth pressure.
    Cho JH; Na SR; Park S; Akinwande D; Liechti KM; Cullinan MA
    Nanotechnology; 2019 Jun; 30(23):235602. PubMed ID: 30780133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene.
    Wu Y; Hao Y; Fu M; Jiang W; Wu Q; Thrower PA; Piner RD; Ke C; Wu Z; Kang J; Ruoff RS
    Nanoscale; 2016 Jan; 8(2):930-7. PubMed ID: 26660490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene.
    Ago H; Ogawa Y; Tsuji M; Mizuno S; Hibino H
    J Phys Chem Lett; 2012 Aug; 3(16):2228-36. PubMed ID: 26295775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.