These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33217746)

  • 21. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO.
    Park KS; Kim S; Kim H; Kwon D; Lee YE; Min SW; Im S; Choi HJ; Lim S; Shin H; Koo SM; Sung MM
    Nanoscale; 2015 Nov; 7(42):17702-9. PubMed ID: 26452020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.
    Zhang H; Zhang Y; Zhang Y; Chen Z; Sui Y; Ge X; Deng R; Yu G; Jin Z; Liu X
    Phys Chem Chem Phys; 2016 Aug; 18(34):23638-42. PubMed ID: 27506467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.
    Das S; Drucker J
    Nanotechnology; 2017 Mar; 28(10):105601. PubMed ID: 28084218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation energy paths for graphene nucleation and growth on Cu.
    Kim H; Mattevi C; Calvo MR; Oberg JC; Artiglia L; Agnoli S; Hirjibehedin CF; Chhowalla M; Saiz E
    ACS Nano; 2012 Apr; 6(4):3614-23. PubMed ID: 22443380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-Subgrain-Defined Oxidation of Copper.
    Luo B; Koleini M; Whelan PR; Shivayogimath A; Brandbyge M; Bøggild P; Booth TJ
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48518-48524. PubMed ID: 31797664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.
    Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC
    Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controllable Growth of Graphene on Liquid Surfaces.
    Liu J; Fu L
    Adv Mater; 2019 Mar; 31(9):e1800690. PubMed ID: 30536644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.
    Wang S; Suzuki S; Hibino H
    Nanoscale; 2014 Nov; 6(22):13838-44. PubMed ID: 25303722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of surface oxygen in the growth of large single-crystal graphene on copper.
    Hao Y; Bharathi MS; Wang L; Liu Y; Chen H; Nie S; Wang X; Chou H; Tan C; Fallahazad B; Ramanarayan H; Magnuson CW; Tutuc E; Yakobson BI; McCarty KF; Zhang YW; Kim P; Hone J; Colombo L; Ruoff RS
    Science; 2013 Nov; 342(6159):720-3. PubMed ID: 24158906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical Model of CVD Growth of Graphene on Cu(111) Surface.
    Popov I; Bügel P; Kozlowska M; Fink K; Studt F; Sharapa DI
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO
    Pang J; Mendes RG; Wrobel PS; Wlodarski MD; Ta HQ; Zhao L; Giebeler L; Trzebicka B; Gemming T; Fu L; Liu Z; Eckert J; Bachmatiuk A; Rümmeli MH
    ACS Nano; 2017 Feb; 11(2):1946-1956. PubMed ID: 28117971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils.
    Weatherup RS; Shahani AJ; Wang ZJ; Mingard K; Pollard AJ; Willinger MG; Schloegl R; Voorhees PW; Hofmann S
    Nano Lett; 2016 Oct; 16(10):6196-6206. PubMed ID: 27576749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition.
    Liu J; Huang Z; Lai F; Lin L; Xu Y; Zuo C; Zheng W; Qu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):455. PubMed ID: 26612469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene.
    Lin L; Li J; Ren H; Koh AL; Kang N; Peng H; Xu HQ; Liu Z
    ACS Nano; 2016 Feb; 10(2):2922-9. PubMed ID: 26832229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strain Relaxation of Graphene Layers by Cu Surface Roughening.
    Kang JH; Moon J; Kim DJ; Kim Y; Jo I; Jeon C; Lee J; Hong BH
    Nano Lett; 2016 Oct; 16(10):5993-5998. PubMed ID: 27627456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition.
    Wood JD; Schmucker SW; Lyons AS; Pop E; Lyding JW
    Nano Lett; 2011 Nov; 11(11):4547-54. PubMed ID: 21942318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts.
    Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH
    Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.