These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33217747)

  • 21. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.
    Mathew R; Sankar AR
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1636-1647. PubMed ID: 29448640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection.
    Hassan K; Tung TT; Stanley N; Yap PL; Farivar F; Rastin H; Nine MJ; Losic D
    Nanoscale; 2021 Mar; 13(10):5356-5368. PubMed ID: 33660735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and optimization of in-plane actuator driven cantilever with high sensitivity sensors.
    Chen X; Lee DW
    J Nanosci Nanotechnol; 2010 May; 10(5):3236-40. PubMed ID: 20358930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites.
    Christ JF; Aliheidari N; Pötschke P; Ameli A
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30959995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible, Structured MWCNT/PDMS Sensor for Chronic Vascular Access Monitoring.
    Majerus SJA; Dunning J; Potkay JA; Bogie KM
    Proc IEEE Sens; 2016 Oct-Nov/; 2016(IEEE SENSORS):. PubMed ID: 31435454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of Newtonian fluid pressure in microcantilever integrated flexible microfluidic channel for healthcare application.
    Saxena A; Kumar M; Mishra D; Singh K
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38452735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile Fabrication of 3D Porous Sponges Coated with Synergistic Carbon Black/Multiwalled Carbon Nanotubes for Tactile Sensing Applications.
    Al-Handarish Y; Omisore OM; Duan W; Chen J; Zebang L; Akinyemi TO; Du W; Li H; Wang L
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practical Considerations for Laser-Induced Graphene Pressure Sensors Used in Marine Applications.
    Van Volkenburg T; Ayoub D; Alemán Reyes A; Xia Z; Hamilton L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO
    Chen Z; Wang J; Umar A; Wang Y; Li H; Zhou G
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11819-11827. PubMed ID: 28299928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets.
    Rinaldi A; Tamburrano A; Fortunato M; Sarto MS
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. μ-Biomimetic flow-sensors--introducing light-guiding PDMS structures into MEMS.
    Herzog H; Klein A; Bleckmann H; Holik P; Schmitz S; Siebke G; Tätzner S; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2015 Apr; 10(3):036001. PubMed ID: 25879762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors.
    Abels C; Qualtieri A; Lober T; Mariotti A; Chambers LD; De Vittorio M; Megill WM; Rizzi F
    Beilstein J Nanotechnol; 2019; 10():32-46. PubMed ID: 30680277
    [No Abstract]   [Full Text] [Related]  

  • 38. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale 3D-printing of microfluidic AFM cantilevers.
    Kramer RCLN; Verlinden EJ; Angeloni L; van den Heuvel A; Fratila-Apachitei LE; van der Maarel SM; Ghatkesar MK
    Lab Chip; 2020 Jan; 20(2):311-319. PubMed ID: 31808485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Graphene Wrinkle for a High-Performance Flexible Pressure Sensor.
    Tang X; Yang W; Yin S; Tai G; Su M; Yang J; Shi H; Wei D; Yang J
    ACS Appl Mater Interfaces; 2021 May; 13(17):20448-20458. PubMed ID: 33899475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.