These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 33217901)

  • 1. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity.
    Catalán M; Olmedo I; Faúndez J; Jara JA
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents.
    Ralph SJ; Low P; Dong L; Lawen A; Neuzil J
    Recent Pat Anticancer Drug Discov; 2006 Nov; 1(3):327-46. PubMed ID: 18221044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS.
    Chen V; Staub RE; Fong S; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(2):e30300. PubMed ID: 22319564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative phosphorylation as a target to arrest malignant neoplasias.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R
    Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors.
    Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S
    Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promising strategy developed to target drug-resistant cancer cells.
    Thorne J
    Future Med Chem; 2014 Apr; 6(6):603. PubMed ID: 25028759
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic alterations in cancer cells and therapeutic implications.
    Hammoudi N; Ahmed KB; Garcia-Prieto C; Huang P
    Chin J Cancer; 2011 Aug; 30(8):508-25. PubMed ID: 21801600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.
    Zielonka J; Joseph J; Sikora A; Hardy M; Ouari O; Vasquez-Vivar J; Cheng G; Lopez M; Kalyanaraman B
    Chem Rev; 2017 Aug; 117(15):10043-10120. PubMed ID: 28654243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OXPHOS-targeting drugs in oncology: new perspectives.
    Kalyanaraman B; Cheng G; Hardy M; You M
    Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolysis-induced drug resistance in tumors-A response to danger signals?
    Marcucci F; Rumio C
    Neoplasia; 2021 Feb; 23(2):234-245. PubMed ID: 33418276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy.
    Sheng X; Wang MM; Zhang GD; Su Y; Fang HB; Yu ZH; Su Z
    Bioorg Chem; 2024 Jun; 147():107325. PubMed ID: 38583247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From delocalized lipophilic cations to hypoxia: blocking tumor cell mitochondrial function leads to therapeutic gain with glycolytic inhibitors.
    Kurtoglu M; Lampidis TJ
    Mol Nutr Food Res; 2009 Jan; 53(1):68-75. PubMed ID: 19072739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro.
    Zhong Y; Li X; Yu D; Li X; Li Y; Long Y; Yuan Y; Ji Z; Zhang M; Wen JG; Nesland JM; Suo Z
    Oncotarget; 2015 Nov; 6(35):37758-69. PubMed ID: 26413751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA.
    Ooi AT; Gomperts BN
    Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer cell metabolism: Rewiring the mitochondrial hub.
    Oliveira GL; Coelho AR; Marques R; Oliveira PJ
    Biochim Biophys Acta Mol Basis Dis; 2021 Feb; 1867(2):166016. PubMed ID: 33246010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism.
    Ai Z; Lu Y; Qiu S; Fan Z
    Cancer Lett; 2016 Apr; 373(1):36-44. PubMed ID: 26801746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-targeted nano-assemblies for energy-blocking cocktail therapy in cancer.
    Chen M; Liu Y; Li Y; Liu X
    Acta Biomater; 2024 Aug; 184():368-382. PubMed ID: 38908417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.