These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 33217990)

  • 1. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin.
    Gupta N; Verma K; Nalla S; Kulshreshtha A; Lall R; Prasad S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33217990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century.
    Saeidnia S; Abdollahi M
    Toxicol Appl Pharmacol; 2013 Aug; 271(1):49-63. PubMed ID: 23680455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T63, a new 4-arylidene curcumin analogue, induces cell cycle arrest and apoptosis through activation of the reactive oxygen species-FOXO3a pathway in lung cancer cells.
    Liu H; Zhou BH; Qiu X; Wang HS; Zhang F; Fang R; Wang XF; Cai SH; Du J; Bu XZ
    Free Radic Biol Med; 2012 Dec; 53(12):2204-17. PubMed ID: 23085518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer.
    Thangavel S; Yoshitomi T; Sakharkar MK; Nagasaki Y
    J Control Release; 2015 Jul; 209():110-9. PubMed ID: 25912409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress in carcinogenesis: new synthetic compounds with dual effects upon free radicals and cancer.
    Tekiner-Gulbas B; Westwell AD; Suzen S
    Curr Med Chem; 2013; 20(36):4451-9. PubMed ID: 23834180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway.
    Lin X; Bai D; Wei Z; Zhang Y; Huang Y; Deng H; Huang X
    PLoS One; 2019; 14(5):e0216711. PubMed ID: 31112588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants.
    Zahra KF; Lefter R; Ali A; Abdellah EC; Trus C; Ciobica A; Timofte D
    Oxid Med Cell Longev; 2021; 2021():9965916. PubMed ID: 34394838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radicals in the regulation of damage and cell death - basic mechanisms and prevention.
    Silva JP; Coutinho OP
    Drug Discov Ther; 2010 Jun; 4(3):144-67. PubMed ID: 22491178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Production of Reactive Oxygen Species as an Anticancer Strategy.
    Marioli-Sapsakou GK; Kourti M
    Anticancer Res; 2021 Dec; 41(12):5881-5902. PubMed ID: 34848443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review.
    Choudhari SK; Chaudhary M; Gadbail AR; Sharma A; Tekade S
    Oral Oncol; 2014 Jan; 50(1):10-8. PubMed ID: 24126222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids.
    Dai F; Liu GY; Li Y; Yan WJ; Wang Q; Yang J; Lu DL; Ding DJ; Lin D; Zhou B
    Free Radic Biol Med; 2015 Aug; 85():127-37. PubMed ID: 25912482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role.
    Meghana K; Sanjeev G; Ramesh B
    Eur J Pharmacol; 2007 Dec; 577(1-3):183-91. PubMed ID: 17900558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radicals and antioxidants in human health: current status and future prospects.
    Devasagayam TP; Tilak JC; Boloor KK; Sane KS; Ghaskadbi SS; Lele RD
    J Assoc Physicians India; 2004 Oct; 52():794-804. PubMed ID: 15909857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives.
    Kumar G; Mittal S; Sak K; Tuli HS
    Life Sci; 2016 Mar; 148():313-28. PubMed ID: 26876915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal.
    Biswas J; Sinha D; Mukherjee S; Roy S; Siddiqi M; Roy M
    Hum Exp Toxicol; 2010 Jun; 29(6):513-24. PubMed ID: 20056736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the interaction among dietary antioxidants and reactive oxygen species.
    Seifried HE; Anderson DE; Fisher EI; Milner JA
    J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down regulation of superoxide dismutases and glutathione peroxidase by reactive oxygen and nitrogen species.
    Fujii J; Taniguchi N
    Free Radic Res; 1999 Oct; 31(4):301-8. PubMed ID: 10517534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin and curcumin-like molecules: from spice to drugs.
    Marchiani A; Rozzo C; Fadda A; Delogu G; Ruzza P
    Curr Med Chem; 2014; 21(2):204-22. PubMed ID: 23590716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant inhibitors for cancer therapy.
    Kong Q; Lillehei KO
    Med Hypotheses; 1998 Nov; 51(5):405-9. PubMed ID: 9848469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.