These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33218000)

  • 1. Whole-Field Reinforcement Learning: A Fully Autonomous Aerial Scouting Method for Precision Agriculture.
    Zhang Z; Boubin J; Stewart C; Khanal S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon.
    Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J
    Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.
    Bengochea-Guevara JM; Conesa-Muñoz J; Andújar D; Ribeiro A
    Sensors (Basel); 2016 Feb; 16(3):276. PubMed ID: 26927102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of UAS in Crop Biomass Monitoring: A Review.
    Wang T; Liu Y; Wang M; Fan Q; Tian H; Qiao X; Li Y
    Front Plant Sci; 2021; 12():616689. PubMed ID: 33897719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
    Zhang J; Basso B; Price RF; Putman G; Shuai G
    PLoS One; 2018; 13(4):e0195223. PubMed ID: 29677204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Reconfigurable Crop Scouting Vehicle for Row Crop Navigation: A Proof-of-Concept Study.
    Schmitz A; Badgujar C; Mansur H; Flippo D; McCornack B; Sharda A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.
    Papadopoulos A; Kalivas D; Theocharopoulos S
    Environ Monit Assess; 2017 Jul; 189(7):323. PubMed ID: 28593563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development.
    Shafian S; Rajan N; Schnell R; Bagavathiannan M; Valasek J; Shi Y; Olsenholler J
    PLoS One; 2018; 13(5):e0196605. PubMed ID: 29715311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost Live Insect Scouting Drone: iDrone Bee.
    Ryu JH; Clements J; Neufeld J
    J Insect Sci; 2022 Jul; 22(4):. PubMed ID: 35793373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmanned Aerial System-Based Data Ferrying over a Sensor Node Station Network in Maize.
    Singh J; Ge Y; Heeren DM; Walter-Shea E; Neale CMU; Irmak S; Maguire MS
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using unmanned aerial systems and deep learning for agriculture mapping in Dubai.
    El Hoummaidi L; Larabi A; Alam K
    Heliyon; 2021 Oct; 7(10):e08154. PubMed ID: 34703924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the ability of unmanned aerial systems and machine learning to map weeds at subfield scales: a test with the weed Alopecurus myosuroides (Huds).
    Lambert JP; Childs DZ; Freckleton RP
    Pest Manag Sci; 2019 Aug; 75(8):2283-2294. PubMed ID: 30972939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.
    DeChant C; Wiesner-Hanks T; Chen S; Stewart EL; Yosinski J; Gore MA; Nelson RJ; Lipson H
    Phytopathology; 2017 Nov; 107(11):1426-1432. PubMed ID: 28653579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust mosaicking of maize fields from aerial imagery.
    Aktar R; Kharismawati DE; Palaniappan K; Aliakbarpour H; Bunyak F; Stapleton AE; Kazic T
    Appl Plant Sci; 2020 Aug; 8(8):e11387. PubMed ID: 32995105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying pests in precision agriculture using low-cost image data acquisition.
    Hemalatha S; Sangeetha M
    Braz J Biol; 2024; 84():e281671. PubMed ID: 38747863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Automated Field Plot Segmentation From UAS Imagery for Experimental Agriculture.
    Robb C; Hardy A; Doonan JH; Brook J
    Front Plant Sci; 2020; 11():591886. PubMed ID: 33362820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.