These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33218118)
1. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Zhang Y; Ju F; Wei X; Wang D; Wang Y Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218118 [TBL] [Abstract][Full Text] [Related]
2. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery. Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594 [TBL] [Abstract][Full Text] [Related]
3. Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps. Othman W; Vandyck KE; Abril C; Barajas-Gamboa JS; Pantoja JP; Kroh M; Qasaimeh MA IEEE J Transl Eng Health Med; 2022; 10():2500410. PubMed ID: 35774413 [TBL] [Abstract][Full Text] [Related]
4. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery. Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117 [TBL] [Abstract][Full Text] [Related]
5. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery. Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087 [TBL] [Abstract][Full Text] [Related]
6. Tactile sensor using acoustic reflection for lump detection in laparoscopic surgery. Tanaka Y; Fukuda T; Fujiwara M; Sano A Int J Comput Assist Radiol Surg; 2015 Feb; 10(2):183-93. PubMed ID: 24801967 [TBL] [Abstract][Full Text] [Related]
7. Viscoelastic modeling of the contact interaction between a tactile sensor and an atrial tissue. Shen JJ; Kalantari M; Kovecses J; Angeles J; Dargahi J IEEE Trans Biomed Eng; 2012 Jun; 59(6):1727-38. PubMed ID: 22481811 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel surgical support instrument and virtual system incorporating new tactile sensor technology. Omata S; Murayama Y; Constantinou CE Stud Health Technol Inform; 2004; 98():288-90. PubMed ID: 15544291 [TBL] [Abstract][Full Text] [Related]
9. A Variable-Impedance Tactile Sensor With Online Performance Tuning for Tissue Hardness Palpation in Robot-Assisted Minimally Invasive Surgery. Ju F; Yun Y; Zhang Z; Wang Y; Wang Y; Zhang L; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2142-2145. PubMed ID: 30440827 [TBL] [Abstract][Full Text] [Related]
10. Snake-like surgical forceps for robot-assisted minimally invasive surgery. Jin X; Zhao J; Feng M; Hao L; Li Q Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936 [TBL] [Abstract][Full Text] [Related]
11. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Wu C; Zhang T; Zhang J; Huang J; Tang X; Zhou T; Rong Y; Huang Y; Shi S; Zeng D Nanoscale Horiz; 2020 Mar; 5(3):541-552. PubMed ID: 32118233 [TBL] [Abstract][Full Text] [Related]
12. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. Talasaz A; Patel RV IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity improvements of a resonance-based tactile sensor. Murayama Y; Lindahl OA J Med Eng Technol; 2017 Feb; 41(2):131-140. PubMed ID: 27701917 [TBL] [Abstract][Full Text] [Related]
14. Force feedback in a piezoelectric linear actuator for neurosurgery. De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769 [TBL] [Abstract][Full Text] [Related]
15. Explanatory models for a tactile resonance sensor system-elastic and density-related variations of prostate tissue in vitro. Jalkanen V; Andersson BM; Bergh A; Ljungberg B; Lindahl OA Physiol Meas; 2008 Jul; 29(7):729-45. PubMed ID: 18560055 [TBL] [Abstract][Full Text] [Related]
16. Tactile sensor-based real-time clustering for tissue differentiation. Stroop R; Nakamura M; Schoukens J; Oliva Uribe D Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):129-137. PubMed ID: 30293172 [TBL] [Abstract][Full Text] [Related]
17. A Polymeric Piezoelectric Tactile Sensor Fabricated by 3D Printing and Laser Micromachining for Hardness Differentiation during Palpation. Ge C; Cretu E Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557463 [TBL] [Abstract][Full Text] [Related]
18. Disposable Stiffness Sensor for Endoscopic Examination. Faragasso A; Bimbo JO; Yamashita A; Asama H Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4309-4312. PubMed ID: 30441307 [TBL] [Abstract][Full Text] [Related]
19. A robotic microsurgical forceps for transoral laser microsurgery. Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304 [TBL] [Abstract][Full Text] [Related]
20. Determination of damping coefficient of soft tissues using piezoelectric transducer. Esmaeel A; Ahmed KIE; FathEl-Bab AMR Biomed Microdevices; 2021 Apr; 23(2):23. PubMed ID: 33847817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]