These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33218236)

  • 1. Efficient local energy evaluation for multi-Slater wave functions in orbital space quantum Monte Carlo.
    Mahajan A; Sharma S
    J Chem Phys; 2020 Nov; 153(19):194108. PubMed ID: 33218236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the energy of a water molecule using multideterminants: a simple, efficient algorithm.
    Clark BK; Morales MA; McMinis J; Kim J; Scuseria GE
    J Chem Phys; 2011 Dec; 135(24):244105. PubMed ID: 22225142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.
    Nukala PK; Kent PR
    J Chem Phys; 2009 May; 130(20):204105. PubMed ID: 19485435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the Energy with Quantum Monte Carlo: A Lower Numerical Scaling for Jastrow-Slater Expansions.
    Assaraf R; Moroni S; Filippi C
    J Chem Theory Comput; 2017 Nov; 13(11):5273-5281. PubMed ID: 28873307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules.
    Toulouse J; Umrigar CJ
    J Chem Phys; 2008 May; 128(17):174101. PubMed ID: 18465904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian.
    Nakatsuka Y; Nakajima T; Nakata M; Hirao K
    J Chem Phys; 2010 Feb; 132(5):054102. PubMed ID: 20136300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energies of the first row atoms from quantum Monte Carlo.
    Brown MD; Trail JR; Ríos PL; Needs RJ
    J Chem Phys; 2007 Jun; 126(22):224110. PubMed ID: 17581047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-Extensive Wave Functions for Quantum Monte Carlo: A Linear Scaling Generalized Valence Bond Approach.
    Fracchia F; Filippi C; Amovilli C
    J Chem Theory Comput; 2012 Jun; 8(6):1943-51. PubMed ID: 26593829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo.
    Nakano K; Attaccalite C; Barborini M; Capriotti L; Casula M; Coccia E; Dagrada M; Genovese C; Luo Y; Mazzola G; Zen A; Sorella S
    J Chem Phys; 2020 May; 152(20):204121. PubMed ID: 32486669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.
    Clay RC; Morales MA
    J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fixed- and Partial-Node Approximations in Slater Determinant Space for Molecules.
    Blunt NS
    J Chem Theory Comput; 2021 Oct; 17(10):6092-6104. PubMed ID: 34549947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.
    Kim J; Baczewski AT; Beaudet TD; Benali A; Bennett MC; Berrill MA; Blunt NS; Borda EJL; Casula M; Ceperley DM; Chiesa S; Clark BK; Clay RC; Delaney KT; Dewing M; Esler KP; Hao H; Heinonen O; Kent PRC; Krogel JT; Kylänpää I; Li YW; Lopez MG; Luo Y; Malone FD; Martin RM; Mathuriya A; McMinis J; Melton CA; Mitas L; Morales MA; Neuscamman E; Parker WD; Pineda Flores SD; Romero NA; Rubenstein BM; Shea JAR; Shin H; Shulenburger L; Tillack AF; Townsend JP; Tubman NM; Van Der Goetz B; Vincent JE; Yang DC; Yang Y; Zhang S; Zhao L
    J Phys Condens Matter; 2018 May; 30(19):195901. PubMed ID: 29582782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence to the fixed-node limit in deep variational Monte Carlo.
    Schätzle Z; Hermann J; Noé F
    J Chem Phys; 2021 Mar; 154(12):124108. PubMed ID: 33810658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Speed and Scaling in Orbital Space Variational Monte Carlo.
    Sabzevari I; Sharma S
    J Chem Theory Comput; 2018 Dec; 14(12):6276-6286. PubMed ID: 30418769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions.
    Mahajan A; Sharma S
    J Chem Theory Comput; 2021 Aug; 17(8):4786-4798. PubMed ID: 34232637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo.
    Aspuru-Guzik A; Salomón-Ferrer R; Austin B; Lester WA
    J Comput Chem; 2005 May; 26(7):708-15. PubMed ID: 15761862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Monte Carlo calculations of the potential energy curve of the helium dimer.
    Springall R; Per MC; Russo SP; Snook IK
    J Chem Phys; 2008 Mar; 128(11):114308. PubMed ID: 18361572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.
    Filippi C; Assaraf R; Moroni S
    J Chem Phys; 2016 May; 144(19):194105. PubMed ID: 27208934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space-warp coordinate transformation for efficient ionic force calculations in quantum Monte Carlo.
    Nakano K; Raghav A; Sorella S
    J Chem Phys; 2022 Jan; 156(3):034101. PubMed ID: 35065566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.