BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33218622)

  • 21. The kinetics of ageing in dry-stored seeds: a comparison of viability loss and RNA degradation in unique legacy seed collections.
    Fleming MB; Hill LM; Walters C
    Ann Bot; 2019 Jul; 123(7):1133-1146. PubMed ID: 30566591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seed life span and food security.
    Colville L; Pritchard HW
    New Phytol; 2019 Oct; 224(2):557-562. PubMed ID: 31225902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.
    Nagel M; Kranner I; Neumann K; Rolletschek H; Seal CE; Colville L; Fernández-Marín B; Börner A
    Plant Cell Environ; 2015 Jun; 38(6):1011-22. PubMed ID: 25328120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.
    Rissel D; Losch J; Peiter E
    Plant Biol (Stuttg); 2014 Nov; 16(6):1058-64. PubMed ID: 24533577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Moisture adsorption isotherms and quality of seeds stored in conventional packaging materials and hermetic Super Bag.
    Bakhtavar MA; Afzal I; Basra SMA
    PLoS One; 2019; 14(2):e0207569. PubMed ID: 30768633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis.
    Chen HH; Chu P; Zhou YL; Ding Y; Li Y; Liu J; Jiang LW; Huang SZ
    Plant J; 2016 Nov; 88(4):608-619. PubMed ID: 27464651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species.
    Zhang K; Zhang Y; Sun J; Meng J; Tao J
    Plant Physiol Biochem; 2021 Jan; 158():475-485. PubMed ID: 33250322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative seed longevity under genebank storage and artificial ageing: a case study in heteromorphic wheat wild relatives.
    Gianella M; Balestrazzi A; Ravasio A; Mondoni A; Börner A; Guzzon F
    Plant Biol (Stuttg); 2022 Aug; 24(5):836-845. PubMed ID: 35506610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.
    Postma FM; Ågren J
    Mol Ecol; 2015 Feb; 24(4):785-97. PubMed ID: 25640699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abscisic acid-determined seed vigour differences do not influence redox regulation during ageing.
    Schausberger C; Roach T; Stöggl W; Arc E; Finch-Savage WE; Kranner I
    Biochem J; 2019 Mar; 476(6):965-974. PubMed ID: 30819782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years of storage.
    Mira S; Estrelles E; González-Benito ME
    Plant Biol (Stuttg); 2015 Jan; 17(1):153-62. PubMed ID: 24804799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.).
    Arif MA; Nagel M; Lohwasser U; Borner A
    J Biosci; 2017 Mar; 42(1):81-89. PubMed ID: 28229967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed longevity and cryobiotechnology in the orchid genus cattleya.
    Fileti JF; Hengling MM; Gianeti TMG; Pritchard HW; Hosomi ST; Machado-Neto NB; Custodio CC
    Cryo Letters; 2021; 42(6):353-365. PubMed ID: 35366301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics.
    Renard J; Niñoles R; Martínez-Almonacid I; Gayubas B; Mateos-Fernández R; Bissoli G; Bueso E; Serrano R; Gadea J
    Plant Cell Environ; 2020 Oct; 43(10):2523-2539. PubMed ID: 32519347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population.
    El-Lithy ME; Clerkx EJ; Ruys GJ; Koornneef M; Vreugdenhil D
    Plant Physiol; 2004 May; 135(1):444-58. PubMed ID: 15122039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways.
    Righetti K; Vu JL; Pelletier S; Vu BL; Glaab E; Lalanne D; Pasha A; Patel RV; Provart NJ; Verdier J; Leprince O; Buitink J
    Plant Cell; 2015 Oct; 27(10):2692-708. PubMed ID: 26410298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis.
    Chen H; Chu P; Zhou Y; Li Y; Liu J; Ding Y; Tsang EW; Jiang L; Wu K; Huang S
    J Exp Bot; 2012 Jun; 63(11):4107-21. PubMed ID: 22473985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gaseous environment modulates volatile emission and viability loss during seed artificial ageing.
    Han B; Fernandez V; Pritchard HW; Colville L
    Planta; 2021 Apr; 253(5):106. PubMed ID: 33864524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity.
    Zhou W; Chen F; Luo X; Dai Y; Yang Y; Zheng C; Yang W; Shu K
    Plant Cell Environ; 2020 Feb; 43(2):293-302. PubMed ID: 31675441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecological correlates of ex situ seed longevity: a comparative study on 195 species.
    Probert RJ; Daws MI; Hay FR
    Ann Bot; 2009 Jul; 104(1):57-69. PubMed ID: 19359301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.