These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 33218778)
1. Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity? Vieira LAJ; Alves RDFB; Menezes-Silva PE; Mendonça MAC; Silva MLF; Silva MCAP; Sousa LF; Loram-Lourenço L; Alves da Silva A; Costa AC; Silva FG; Farnese FS Environ Pollut; 2021 Mar; 272():115971. PubMed ID: 33218778 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534 [TBL] [Abstract][Full Text] [Related]
3. Potential of Alonso FG; Mielke KC; Brochado MGDS; Mendes KF; Tornisielo VL J Environ Sci Health B; 2021; 56(7):644-649. PubMed ID: 34096452 [TBL] [Abstract][Full Text] [Related]
4. Use of Pistia stratiotes for phytoremediation of water resources contaminated by clomazone. Escoto DF; Gayer MC; Bianchini MC; da Cruz Pereira G; Roehrs R; Denardin ELG Chemosphere; 2019 Jul; 227():299-304. PubMed ID: 30999171 [TBL] [Abstract][Full Text] [Related]
5. Morphoanatomical injuries in Pistia stratiotes L. (Araceae) as a result of exposure to clomazone in water. Ribeiro VHV; Coutinho ÍAC; Alencar BTB; Cabral CM; Santos JBD; Ferreira EA; Francino DMT An Acad Bras Cienc; 2020; 92 Suppl 1():e20180519. PubMed ID: 32348414 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce ( Şentürk İ; Eyceyurt Divarcı NS; Öztürk M Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation potential of Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050 [TBL] [Abstract][Full Text] [Related]
8. Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Farnese FS; Oliveira JA; Gusman GS; Leão GA; Silveira NM; Silva PM; Ribeiro C; Cambraia J Int J Phytoremediation; 2014; 16(2):123-37. PubMed ID: 24912205 [TBL] [Abstract][Full Text] [Related]
9. The impact of humic acid on toxicity of individual herbicides and their mixtures to aquatic macrophytes. Mihajlović V; Tomić T; Tubić A; Molnar Jazić J; Ivančev Tumbas I; Šunjka D; Lazić S; Teodorović I Environ Sci Pollut Res Int; 2019 Aug; 26(23):23571-23582. PubMed ID: 31203541 [TBL] [Abstract][Full Text] [Related]
10. Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation. Das S; Das A; Mazumder PET; Paul R; Das S Int J Phytoremediation; 2021; 23(12):1279-1288. PubMed ID: 33678068 [TBL] [Abstract][Full Text] [Related]
11. Regulation and microbial response mechanism of nitric oxide to copper-containing swine wastewater treated by Pistia stratiotes. Hou T; Liu J; Yao Y; Chen K; Mao C; Zhang J; Li Z; Zhang K; Yang P Environ Pollut; 2024 Oct; 359():124560. PubMed ID: 39019313 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the phytoremediation conditions of wastewater in post-treatment by Ntakiyiruta P; Briton BGH; Nsavyimana G; Adouby K; Nahimana D; Ntakimazi G; Reinert L Environ Technol; 2022 May; 43(12):1805-1818. PubMed ID: 33198589 [TBL] [Abstract][Full Text] [Related]
13. Potential application of Barchanska H; Plonka J; Jaros A; Ostrowska A Int J Phytoremediation; 2019; 21(11):1090-1097. PubMed ID: 31084361 [TBL] [Abstract][Full Text] [Related]
14. Removal of fluoride contamination in water by three aquatic plants. Karmakar S; Mukherjee J; Mukherjee S Int J Phytoremediation; 2016; 18(3):222-7. PubMed ID: 26247406 [TBL] [Abstract][Full Text] [Related]
15. Treatment of textile effluents with Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996 [TBL] [Abstract][Full Text] [Related]
16. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Das S; Goswami S; Talukdar AD Bull Environ Contam Toxicol; 2014 Feb; 92(2):169-74. PubMed ID: 24220931 [TBL] [Abstract][Full Text] [Related]
17. Potential of water lettuce ( Rodrigues ACD; Rocha MVC; Lima ESA; Pinho CF; Santos AMD; Santos FSD; Amaral Sobrinho NMBD Int J Phytoremediation; 2020; 22(10):1019-1027. PubMed ID: 32064901 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation and physiological traits qualify Pistia stratiotes as a suitable species for phytoremediation and bioindication of iron-contaminated water. Coelho DG; da Silva VM; Gomes Filho AAP; Oliveira LA; de Araújo HH; Farnese FDS; Araújo WL; de Oliveira JA J Hazard Mater; 2023 Mar; 446():130701. PubMed ID: 36603425 [TBL] [Abstract][Full Text] [Related]
19. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Kumar V; Singh J; Chopra AK Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378 [TBL] [Abstract][Full Text] [Related]
20. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Prasertsup P; Ariyakanon N Int J Phytoremediation; 2011 Apr; 13(4):383-95. PubMed ID: 21598800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]