These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 33218799)
1. Crayfish tissue metabolomes effectively distinguish impacts of wastewater and agriculture in aquatic ecosystems. Izral NM; Brua RB; Culp JM; Yates AG Sci Total Environ; 2021 Mar; 760():143322. PubMed ID: 33218799 [TBL] [Abstract][Full Text] [Related]
2. Evidence of interregional similarity in crayfish metabolomes at reference sites: Progress towards the metabolome as a biomonitoring tool. Bilhorn C; Brua RB; Izral NM; Yates AG J Environ Manage; 2024 Feb; 352():120076. PubMed ID: 38211428 [TBL] [Abstract][Full Text] [Related]
3. Developing metabolomics-based bioassessment: crayfish metabolome sensitivity to food and dissolved oxygen stress. Izral NM; Brua RB; Culp JM; Yates AG Environ Sci Pollut Res Int; 2018 Dec; 25(36):36184-36193. PubMed ID: 30362038 [TBL] [Abstract][Full Text] [Related]
4. Differing behavioral changes in crayfish and bluegill under short- and long-chain PFAS exposures: Field study in Northern Michigan, USA. Coy CO; Steele AN; Abdulelah SA; Belanger RM; Crile KG; Stevenson LM; Moore PA Ecotoxicol Environ Saf; 2022 Dec; 247():114212. PubMed ID: 36274321 [TBL] [Abstract][Full Text] [Related]
5. Metabolic product response profiles of Cherax quadricarinatus towards white spot syndrome virus infection. Fan W; Ye Y; Chen Z; Shao Y; Xie X; Zhang W; Liu HP; Li C Dev Comp Immunol; 2016 Aug; 61():236-41. PubMed ID: 27068762 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent biological responses of juvenile yellow perch (Perca flavescens) exposed in situ to a major urban effluent. Defo MA; Mercier L; Beauvais C; Brua RB; Tétreault G; Fontaine A; Couture P; Verreault J; Houde M Ecotoxicol Environ Saf; 2021 Oct; 222():112483. PubMed ID: 34237640 [TBL] [Abstract][Full Text] [Related]
7. The effects of non-native signal crayfish (Pacifastacus leniusculus) on fine sediment and sediment-biomonitoring. Turley MD; Bilotta GS; Gasparrini A; Sera F; Mathers KL; Humpheryes I; England J Sci Total Environ; 2017 Dec; 601-602():186-193. PubMed ID: 28551537 [TBL] [Abstract][Full Text] [Related]
8. Alternosema astaquatica n. sp. (Microsporidia: Enterocytozoonida), a systemic parasite of the crayfish Faxonius virilis. Stratton CE; Reisinger LS; Behringer DC; Reinke AW; Bojko J J Invertebr Pathol; 2023 Jul; 199():107948. PubMed ID: 37276935 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii. Li W; Chiu KH; Tien YC; Tsai SF; Shih LJ; Lee CH; Toullec JY; Lee CY PLoS One; 2017; 12(2):e0172557. PubMed ID: 28207859 [TBL] [Abstract][Full Text] [Related]
10. Effects of mining-derived metals on riffle-dwelling crayfish in southwestern Missouri and southeastern Kansas, USA. Allert AL; DiStefano RJ; Schmitt CJ; Fairchild JF; Brumbaugh WG Arch Environ Contam Toxicol; 2012 Nov; 63(4):563-73. PubMed ID: 22961179 [TBL] [Abstract][Full Text] [Related]
11. Injury frequency and severity in crayfish communities as indicators of physical habitat quality and water quality within agricultural headwater streams. Wood TC; Smiley PC; Gillespie RB; Gonzalez JM; King KW Environ Monit Assess; 2020 Mar; 192(4):227. PubMed ID: 32157442 [TBL] [Abstract][Full Text] [Related]
12. Mercury in the northern crayfish, Orconectes virilis (Hagen), in New England, USA. Pennuto CM; Lane OP; Evers DC; Taylor RJ; Loukmas J Ecotoxicology; 2005 Mar; 14(1-2):149-62. PubMed ID: 15931964 [TBL] [Abstract][Full Text] [Related]
13. Habitat explains patterns of population decline for an invasive crayfish. Larson ER; Kreps TA; Peters B; Peters JA; Lodge DM Ecology; 2019 May; 100(5):e02659. PubMed ID: 30919952 [TBL] [Abstract][Full Text] [Related]
14. Use of crayfish in biomonitoring studies of environmental pollution of the river Meuse. Schilderman PA; Moonen EJ; Maas LM; Welle I; Kleinjans JC Ecotoxicol Environ Saf; 1999 Nov; 44(3):241-52. PubMed ID: 10581118 [TBL] [Abstract][Full Text] [Related]
15. Does persistent organic pollutant PFOS (perfluorooctane sulfonate) negative impacts on the aquatic invertebrate organism, Astacus leptodactylus [Eschscholtz, 1823]. Belek N; Erkmen B; Dinçel AS; Gunal AC Ecotoxicology; 2022 Oct; 31(8):1217-1230. PubMed ID: 36065033 [TBL] [Abstract][Full Text] [Related]
16. Metabolomic alterations and oxidative stress are associated with environmental pollution in Procambarus clarkii. Fernández-Cisnal R; García-Sevillano MA; García-Barrera T; Gómez-Ariza JL; Abril N Aquat Toxicol; 2018 Dec; 205():76-88. PubMed ID: 30343212 [TBL] [Abstract][Full Text] [Related]
17. How does sublethal permethrin effect non-target aquatic organisms? Günal AÇ; Tunca SK; Arslan P; Gül G; Dinçel AS Environ Sci Pollut Res Int; 2021 Oct; 28(37):52405-52417. PubMed ID: 34009577 [TBL] [Abstract][Full Text] [Related]
18. Two new species of freshwater crayfish of the genus Faxonius (Decapoda: Cambaridae) from the Ozark Highlands of Arkansas and Missouri. Fetzner JWJ; Taylor CA Zootaxa; 2018 Mar; 4399(4):491-520. PubMed ID: 29690291 [TBL] [Abstract][Full Text] [Related]
19. Distinct bacterial communities in the environmental water, sediment and intestine between two crayfish-plant coculture ecosystems. Wei D; Xing C; Hou D; Zeng S; Zhou R; Yu L; Wang H; Deng Z; Weng S; He J; Huang Z Appl Microbiol Biotechnol; 2021 Jun; 105(12):5087-5101. PubMed ID: 34086119 [TBL] [Abstract][Full Text] [Related]