These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33218927)

  • 21. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bovine and equine peritubular and intertubular dentin.
    Stock SR; Deymier-Black AC; Veis A; Telser A; Lux E; Cai Z
    Acta Biomater; 2014 Sep; 10(9):3969-77. PubMed ID: 24911530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hydration and crack orientation on crack-tip strain, crack opening displacement and crack-tip shielding in elephant dentin.
    Lu X; Rawson SD; Withers PJ
    Dent Mater; 2018 Jul; 34(7):1041-1053. PubMed ID: 29692340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the origin of the toughness of mineralized tissue: microcracking or crack bridging?
    Nalla RK; Kruzic JJ; Ritchie RO
    Bone; 2004 May; 34(5):790-8. PubMed ID: 15121010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fracture toughness of human dentin.
    Iwamoto N; Ruse ND
    J Biomed Mater Res A; 2003 Sep; 66(3):507-12. PubMed ID: 12918033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomography.
    Lu X; Fernández MP; Bradley RS; Rawson SD; O'Brien M; Hornberger B; Leibowitz M; Tozzi G; Withers PJ
    Acta Biomater; 2019 Sep; 96():400-411. PubMed ID: 31254684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peritubular dentin, a highly mineralized, non-collagenous, component of dentin: isolation and capture by laser microdissection.
    Dorvee JR; Deymier-Black A; Gerkowicz L; Veis A
    Connect Tissue Res; 2014 Aug; 55 Suppl 1():9-14. PubMed ID: 25158171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans.
    Bertassoni LE; Stankoska K; Swain MV
    Micron; 2012 Feb; 43(2-3):229-36. PubMed ID: 21890367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the fracture of human dentin: is it stress- or strain-controlled?
    Nalla RK; Kinney JH; Ritchie RO
    J Biomed Mater Res A; 2003 Nov; 67(2):484-95. PubMed ID: 14566789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms.
    Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2003 Oct; 24(22):3955-68. PubMed ID: 12834591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fracture toughness determination of composite resin and dentin/composite resin adhesive interfaces by laboratory testing and finite element models.
    Toparli M; Aksoy T
    Dent Mater; 1998 Jul; 14(4):287-93. PubMed ID: 10379258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.
    Dong XD; Ruse ND
    J Biomed Mater Res A; 2003 Jul; 66(1):103-9. PubMed ID: 12833436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic aspects of fracture and R-curve behavior in human cortical bone.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 Jan; 26(2):217-31. PubMed ID: 15207469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The multi-scale meso-mechanics model of viscoelastic dentin.
    Chen Y; Wu R; Shen L; Yang Y; Wang G; Yang B
    J Mech Behav Biomed Mater; 2022 Dec; 136():105525. PubMed ID: 36302275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crack growth resistance in cortical bone: concept of microcrack toughening.
    Vashishth D; Behiri JC; Bonfield W
    J Biomech; 1997 Aug; 30(8):763-9. PubMed ID: 9239560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of rod decussation and crack growth in enamel.
    Liu S; Xu Y; An B; Zhang D
    Comput Methods Biomech Biomed Engin; 2023 May; 26(6):700-709. PubMed ID: 35815376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fracture Toughness, Breakthrough Morphology, Microstructural Analysis of the T2 Copper-45 Steel Welded Joints.
    Ding H; Huang Q; Liu P; Bao Y; Chai G
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31968586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of fatigue crack growth in human enamel and hydroxyapatite.
    Bajaj D; Nazari A; Eidelman N; Arola DD
    Biomaterials; 2008 Dec; 29(36):4847-54. PubMed ID: 18804277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.