These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33219029)

  • 1.
    Tang X; Gan L; Zhang X; Huang Z
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.
    Kumar A; Zhou T; Emge TJ; Mironov O; Saxton RJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2015 Aug; 137(31):9894-911. PubMed ID: 26200219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst.
    Takahashi K; Yamashita M; Nozaki K
    J Am Chem Soc; 2012 Nov; 134(45):18746-57. PubMed ID: 23116366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis.
    Wen C; Li T; Huang Z; Kang QK
    Chem Rec; 2023 Nov; 23(11):e202300146. PubMed ID: 37283443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.
    Tang X; Jia X; Huang Z
    J Am Chem Soc; 2018 Mar; 140(11):4157-4163. PubMed ID: 29498516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Pot Cooperation of Single-Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization-Hydrosilylation Process.
    Sarma BB; Kim J; Amsler J; Agostini G; Weidenthaler C; Pfänder N; Arenal R; Concepción P; Plessow P; Studt F; Prieto G
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5806-5815. PubMed ID: 31903674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of late transition metal complexes with molecular oxygen.
    Boisvert L; Goldberg KI
    Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems.
    Yuki Y; Takahashi K; Tanaka Y; Nozaki K
    J Am Chem Soc; 2013 Nov; 135(46):17393-400. PubMed ID: 24191719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation.
    Jia X; Huang Z
    Nat Chem; 2016 Feb; 8(2):157-61. PubMed ID: 26791899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis.
    Dong G; Teo P; Wickens ZK; Grubbs RH
    Science; 2011 Sep; 333(6049):1609-12. PubMed ID: 21921194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Rh-Ru Catalysts for Reductive Hydroformylation of Olefins to Alcohols.
    Rodrigues FMS; Kucmierczyk PK; Pineiro M; Jackstell R; Franke R; Pereira MM; Beller M
    ChemSusChem; 2018 Jul; 11(14):2310-2314. PubMed ID: 29874413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.
    Li H; Mazet C
    Acc Chem Res; 2016 Jun; 49(6):1232-41. PubMed ID: 27159335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of C-H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond.
    Xu P; Li W; Xie J; Zhu C
    Acc Chem Res; 2018 Feb; 51(2):484-495. PubMed ID: 29359909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.
    Crestani MG; Hickey AK; Gao X; Pinter B; Cavaliere VN; Ito J; Chen CH; Mindiola DJ
    J Am Chem Soc; 2013 Oct; 135(39):14754-67. PubMed ID: 23981228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt-catalyzed Synthesis of Alkenes and Vinyl Sulfones via Dehydrogenative Coupling of Alcohols and Sulfones.
    Tian H; Lu Y; Tang C
    ChemSusChem; 2024 Jul; ():e202401244. PubMed ID: 39016039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.