These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33219122)

  • 1. Distinct neural ensemble response statistics are associated with recognition and discrimination of natural sound textures.
    Zhai X; Khatami F; Sadeghi M; He F; Read HL; Stevenson IH; Escabí MA
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31482-31493. PubMed ID: 33219122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural ensemble correlation code for sound category identification.
    Sadeghi M; Zhai X; Stevenson IH; Escabí MA
    PLoS Biol; 2019 Oct; 17(10):e3000449. PubMed ID: 31574079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis.
    McDermott JH; Simoncelli EP
    Neuron; 2011 Sep; 71(5):926-40. PubMed ID: 21903084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociable Roles of the Auditory Midbrain and Cortex in Processing the Statistical Features of Natural Sound Textures.
    Peng F; Harper NS; Mishra AP; Auksztulewicz R; Schnupp JWH
    J Neurosci; 2024 Mar; 44(10):. PubMed ID: 38267259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive and Selective Time Averaging of Auditory Scenes.
    McWalter R; McDermott JH
    Curr Biol; 2018 May; 28(9):1405-1418.e10. PubMed ID: 29681472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing Fine Structure and Summary Representation of Sound Textures from Neural Activity.
    Berto M; Ricciardi E; Pietrini P; Weisz N; Bottari D
    eNeuro; 2023 Oct; 10(10):. PubMed ID: 37775312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change Detection in Auditory Textures.
    Boubenec Y; Lawlor J; Shamma S; Englitz B
    Adv Exp Med Biol; 2016; 894():229-239. PubMed ID: 27080663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Discrimination of Sound Textures in Hearing-Impaired and Older Listeners.
    Scheuregger O; Hjortkjær J; Dau T
    Trends Hear; 2021; 25():23312165211065608. PubMed ID: 34939472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of neural responses in the inferior colliculus to statistical features of sound textures.
    Mishra AP; Peng F; Li K; Harper NS; Schnupp JWH
    Hear Res; 2021 Dec; 412():108357. PubMed ID: 34739889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations.
    Souffi S; Lorenzi C; Varnet L; Huetz C; Edeline JM
    J Neurosci; 2020 Jul; 40(27):5228-5246. PubMed ID: 32444386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded Amplitude Modulations in Sound Texture Perception.
    McWalter R; Dau T
    Front Neurosci; 2017; 11():485. PubMed ID: 28955191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
    Górska U; Rupp A; Boubenec Y; Celikel T; Englitz B
    eNeuro; 2018; 5(2):. PubMed ID: 29662943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory Selectivity for Spectral Contrast in Cortical Neurons and Behavior.
    So NLT; Edwards JA; Woolley SMN
    J Neurosci; 2020 Jan; 40(5):1015-1027. PubMed ID: 31826944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Summary statistics in auditory perception.
    McDermott JH; Schemitsch M; Simoncelli EP
    Nat Neurosci; 2013 Apr; 16(4):493-8. PubMed ID: 23434915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different timescales for the neural coding of consonant and vowel sounds.
    Perez CA; Engineer CT; Jakkamsetti V; Carraway RS; Perry MS; Kilgard MP
    Cereb Cortex; 2013 Mar; 23(3):670-83. PubMed ID: 22426334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural circuits underlying auditory contrast gain control and their perceptual implications.
    Lohse M; Bajo VM; King AJ; Willmore BDB
    Nat Commun; 2020 Jan; 11(1):324. PubMed ID: 31949136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective adaptation to "oddball" sounds by the human auditory system.
    Simpson AJ; Harper NS; Reiss JD; McAlpine D
    J Neurosci; 2014 Jan; 34(5):1963-9. PubMed ID: 24478375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
    Woolley SM; Fremouw TE; Hsu A; Theunissen FE
    Nat Neurosci; 2005 Oct; 8(10):1371-9. PubMed ID: 16136039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Like Modulation Sensitivity Emerging through Optimization to Natural Sound Recognition.
    Koumura T; Terashima H; Furukawa S
    J Neurosci; 2023 May; 43(21):3876-3894. PubMed ID: 37185101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds.
    Wang J; Qin L; Chimoto S; Tazunoki S; Sato Y
    Neuroscience; 2014 Jan; 256():309-21. PubMed ID: 24177068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.