These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 33219204)
1. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes. Zhou JD; Zhang TJ; Xu ZJ; Deng ZQ; Gu Y; Ma JC; Wen XM; Leng JY; Lin J; Chen SN; Qian J Cell Death Dis; 2020 Nov; 11(11):997. PubMed ID: 33219204 [TBL] [Abstract][Full Text] [Related]
2. Whole-Genome DNA Methylation Sequencing Reveals Epigenetic Changes in Myelodysplastic Syndromes. Zhou JD; Xu ZJ; Jin Y; Zhang XL; Gu Y; Ma JC; Wen XM; Lin J; Zhang TJ; Qian J Front Oncol; 2022; 12():897898. PubMed ID: 35847864 [TBL] [Abstract][Full Text] [Related]
3. GPX3 methylation in bone marrow predicts adverse prognosis and leukemia transformation in myelodysplastic syndrome. Zhou JD; Lin J; Zhang TJ; Ma JC; Yang L; Wen XM; Guo H; Yang J; Deng ZQ; Qian J Cancer Med; 2017 Jan; 6(1):267-274. PubMed ID: 27891827 [TBL] [Abstract][Full Text] [Related]
4. Identification and validation of prognosis-related DLX5 methylation as an epigenetic driver in myeloid neoplasms. Zhang TJ; Xu ZJ; Gu Y; Wen XM; Ma JC; Zhang W; Deng ZQ; Leng JY; Qian J; Lin J; Zhou JD Clin Transl Med; 2020 Jun; 10(2):e29. PubMed ID: 32508046 [TBL] [Abstract][Full Text] [Related]
5. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Greco M; D'Alò F; Scardocci A; Criscuolo M; Fabiani E; Guidi F; Di Ruscio A; Migliara G; Pagano L; Fianchi L; Chiusolo P; Hohaus S; Leone G; Voso MT Blood Cells Mol Dis; 2010 Oct; 45(3):181-5. PubMed ID: 20655775 [TBL] [Abstract][Full Text] [Related]
6. Identification and validation of SRY-box containing gene family member Zhou JD; Wang YX; Zhang TJ; Li XX; Gu Y; Zhang W; Ma JC; Lin J; Qian J Clin Epigenetics; 2018; 10():92. PubMed ID: 30002740 [TBL] [Abstract][Full Text] [Related]
8. Age-related epigenetic drift in the pathogenesis of MDS and AML. Maegawa S; Gough SM; Watanabe-Okochi N; Lu Y; Zhang N; Castoro RJ; Estecio MR; Jelinek J; Liang S; Kitamura T; Aplan PD; Issa JP Genome Res; 2014 Apr; 24(4):580-91. PubMed ID: 24414704 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes. del Rey M; O'Hagan K; Dellett M; Aibar S; Colyer HA; Alonso ME; Díez-Campelo M; Armstrong RN; Sharpe DJ; Gutiérrez NC; García JL; De Las Rivas J; Mills KI; Hernández-Rivas JM Leukemia; 2013 Mar; 27(3):610-8. PubMed ID: 22936014 [TBL] [Abstract][Full Text] [Related]
10. Epigenetics of myelodysplastic syndromes. Itzykson R; Fenaux P Leukemia; 2014 Mar; 28(3):497-506. PubMed ID: 24247656 [TBL] [Abstract][Full Text] [Related]
11. Monitoring of methylation changes in 9p21 region in patients with myelodysplastic syndromes and acute myeloid leukemia. Cechova H; Lassuthova P; Novakova L; Belickova M; Stemberkova R; Jencik J; Stankova M; Hrabakova P; Pegova K; Zizkova H; Cermak J Neoplasma; 2012; 59(2):168-74. PubMed ID: 22248274 [TBL] [Abstract][Full Text] [Related]
13. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Jiang Y; Dunbar A; Gondek LP; Mohan S; Rataul M; O'Keefe C; Sekeres M; Saunthararajah Y; Maciejewski JP Blood; 2009 Feb; 113(6):1315-25. PubMed ID: 18832655 [TBL] [Abstract][Full Text] [Related]
14. Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions. Benetatos L; Dasoula A; Hatzimichael E; Syed N; Voukelatou M; Dranitsaris G; Bourantas KL; Crook T Ann Hematol; 2011 Sep; 90(9):1037-45. PubMed ID: 21340720 [TBL] [Abstract][Full Text] [Related]
15. A Pre-Leukemic DNA Methylation Signature in Healthy Individuals at Higher Risk for Developing Myeloid Malignancy. Lao Z; Ding LW; Sun QY; Jia L; Yan B; Ng AY; Capinpin SM; Wang R; Ying L; Chng WJ; Koeffler HP; Koh WP; Yuan JM; Yang H; Goh YT; Grigoropoulos N Clin Cancer Res; 2024 May; 30(10):2170-2180. PubMed ID: 38437679 [TBL] [Abstract][Full Text] [Related]
16. Epigenetic dysregulation of ID4 predicts disease progression and treatment outcome in myeloid malignancies. Zhou JD; Zhang TJ; Li XX; Ma JC; Guo H; Wen XM; Zhang W; Yang L; Yan Y; Lin J; Qian J J Cell Mol Med; 2017 Aug; 21(8):1468-1481. PubMed ID: 28452111 [TBL] [Abstract][Full Text] [Related]
17. Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Wong JJ; Lau KA; Pinello N; Rasko JE Cancer Sci; 2014 Nov; 105(11):1457-63. PubMed ID: 25220401 [TBL] [Abstract][Full Text] [Related]
18. SOX7 methylation is an independent prognostic factor in myelodysplastic syndromes. Xu ZJ; Tang CY; Zhou JD; Ma JC; Wen XM; Deng ZQ; Leng JY; Qiu ZY; Qian J; Lin J Pathol Res Pract; 2019 Feb; 215(2):322-328. PubMed ID: 30554866 [TBL] [Abstract][Full Text] [Related]
19. Role of DNA methylation in the pathogenesis and treatment of myelodysplastic syndromes. Khan H; Vale C; Bhagat T; Verma A Semin Hematol; 2013 Jan; 50(1):16-37. PubMed ID: 23507481 [TBL] [Abstract][Full Text] [Related]
20. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome. Xu F; Liu L; Chang CK; He Q; Wu LY; Zhang Z; Shi WH; Guo J; Zhu Y; Zhao YS; Gu SC; Fei CM; Li X Oncotarget; 2016 Feb; 7(7):8119-30. PubMed ID: 26812882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]