These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33219278)

  • 1. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers.
    Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L
    iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.
    Mandal J; Wang D; Overvig AC; Shi NN; Paley D; Zangiabadi A; Cheng Q; Barmak K; Yu N; Yang Y
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28845533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the optoelectronic properties of CoSb
    Taranova A; Akbar K; Yusupov K; You S; Polewczyk V; Mauri S; Balliana E; Rosen J; Moras P; Gradone A; Morandi V; Moretti E; Vomiero A
    Nat Commun; 2023 Nov; 14(1):7280. PubMed ID: 37949914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretically comparative study of spectrally selective solar absorbers in concentrated solar-thermoelectric generators working at high temperature.
    Tapsanit P
    Appl Opt; 2021 Jun; 60(18):5291-5301. PubMed ID: 34263766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Spectrally Selective Absorber Using the ZrB
    Wang J; Ren Z; Luo Y; Wu Z; Liu Y; Hou S; Liu X; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40522-40530. PubMed ID: 34407618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taming the blackbody with infrared metamaterials as selective thermal emitters.
    Liu X; Tyler T; Starr T; Starr AF; Jokerst NM; Padilla WJ
    Phys Rev Lett; 2011 Jul; 107(4):045901. PubMed ID: 21867022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorful solar selective absorber integrated with different colored units.
    Chen F; Wang SW; Liu X; Ji R; Li Z; Chen X; Chen Y; Lu W
    Opt Express; 2016 Jan; 24(2):A92-103. PubMed ID: 26832602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small-size transfer blackbody cavity for calibration of infrared ear thermometers.
    Kim GJ; Yoo YS; Kim BH; Lim SD; Hyun Song J
    Physiol Meas; 2014 May; 35(5):753-62. PubMed ID: 24671115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics.
    Zhou J; Liu Z; Liu G; Pan P; Liu X; Tang C; Liu Z; Wang J
    Opt Express; 2020 Nov; 28(24):36476-36486. PubMed ID: 33379740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.