These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33219451)

  • 1. Immobilization of Laccase on Magnetic Nanoparticles and Application in the Detoxification of Rice Straw Hydrolysate for the Lipid Production of Rhodotorula glutinis.
    Yin L; Chen J; Wu W; Du Z; Guan Y
    Appl Biochem Biotechnol; 2021 Apr; 193(4):998-1010. PubMed ID: 33219451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy.
    Liu Y; Wang Y; Liu H; Zhang J
    Bioresour Technol; 2015 Mar; 180():32-9. PubMed ID: 25585258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.
    Yen HW; Chang JT
    J Biosci Bioeng; 2015 May; 119(5):580-4. PubMed ID: 25454603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of amine-functionalized Fe
    Lin J; Wen Q; Chen S; Le X; Zhou X; Huang L
    Int J Biol Macromol; 2017 Mar; 96():377-383. PubMed ID: 28013004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation.
    Muthuvelu KS; Rajarathinam R; Selvaraj RN; Rajendren VB
    Int J Biol Macromol; 2020 Jun; 152():1098-1107. PubMed ID: 31751696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe
    Chen HY; Ting Y; Kuo HC; Hsieh CW; Hsu HY; Wu CN; Cheng KC
    Int J Biol Macromol; 2021 Mar; 172():270-280. PubMed ID: 33418049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst.
    Wang KF; Liu CL; Sui KY; Guo C; Liu CZ
    Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of laccase on modified Fe
    Amin R; Khorshidi A; Shojaei AF; Rezaei S; Faramarzi MA
    Int J Biol Macromol; 2018 Jul; 114():106-113. PubMed ID: 29567496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization.
    Peng S; Meng HC; Zhou L; Chang J
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7010-4. PubMed ID: 25924363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid.
    Yu X; Zheng Y; Dorgan KM; Chen S
    Bioresour Technol; 2011 May; 102(10):6134-40. PubMed ID: 21463940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes.
    Ariaeenejad S; Barani M; Sarani M; Lohrasbi-Nejad A; Mohammadi-Nejad G; Salekdeh GH
    Int J Biol Macromol; 2024 May; 266(Pt 1):130986. PubMed ID: 38508564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes.
    Chen J; Leng J; Yang X; Liao L; Liu L; Xiao A
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28157159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed.
    Wang F; Hu Y; Guo C; Huang W; Liu CZ
    Bioresour Technol; 2012 Apr; 110():120-4. PubMed ID: 22382292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paddy straw saccharification using immobilized laccase on magnetized multiwall carbon nanotubes.
    Yasmin HAN; Kunasundari B; Shuit SH; Tompang MF
    Biotechnol Lett; 2024 Aug; 46(4):559-569. PubMed ID: 38748066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.
    Lee KM; Min K; Choi O; Kim KY; Woo HM; Kim Y; Han SO; Um Y
    Bioresour Technol; 2015; 187():228-234. PubMed ID: 25863199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of furfural on the growth and lipid production of oleaginous yeast Rhodotorula glutinis].
    Yong Z; Zhang X; Tan T
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1484-91. PubMed ID: 26964337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].
    Lin Z; Liu H; Zhang J; Wang G
    Sheng Wu Gong Cheng Xue Bao; 2016 Mar; 32(3):339-46. PubMed ID: 27349116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis.
    Yen HW; Zhang Z
    J Biosci Bioeng; 2011 Jul; 112(1):71-4. PubMed ID: 21498112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of laccase on magnetic nanoparticles for enhanced polymerization of phenols.
    Xu X; Chen T; Xu L; Lin J
    Enzyme Microb Technol; 2024 Jan; 172():110331. PubMed ID: 37839253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals.
    Kumar VV; Cabana H
    Bioresour Technol; 2016 Jan; 200():81-9. PubMed ID: 26476168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.