These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33219517)

  • 41. Colloid characterization and in situ release in shallow groundwater under different hydrogeology conditions.
    Zhou J; Liu D; Zhang W; Chen X; Huan Y; Yu X
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14445-14454. PubMed ID: 28439687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.
    Mair A; El-Kadi AI
    J Contam Hydrol; 2013 Oct; 153():1-23. PubMed ID: 23948235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A process-based insight to the recent disappearance of streams in the central part of Tarai region, Uttarakhand, India.
    Kumar A; Shekhar S; Sarkar A; Sharma AK
    Environ Monit Assess; 2019 Jan; 191(2):66. PubMed ID: 30637525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An integrated approach for assessing influence of agricultural activities on pesticides in a shallow aquifer in south-eastern Norway.
    Kværner J; Eklo OM; Solbakken E; Solberg I; Sorknes S
    Sci Total Environ; 2014 Nov; 499():520-32. PubMed ID: 24996854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying groundwater end members by spatio-temporal isotopic and hydrogeochemical records.
    Pérez-Quezadas J; Cortés-Silva A; Morales-Casique E; Escolero-Fuentes OA; Medina-Ortega P
    Isotopes Environ Health Stud; 2020; 56(5-6):431-445. PubMed ID: 32930001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.
    Aquilina L; Vergnaud-Ayraud V; Les Landes AA; Pauwels H; Davy P; Pételet-Giraud E; Labasque T; Roques C; Chatton E; Bour O; Ben Maamar S; Dufresne A; Khaska M; Le Gal La Salle C; Barbecot F
    Sci Rep; 2015 Sep; 5():14132. PubMed ID: 26392383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The infrared spectrum of comet Bradfield (1987s) and the silicate emission feature.
    Hanner MS; Newburn RL; Gehrz RD; Harrison T; Ney EP; Hayward TL
    Astrophys J; 1990 Jan; 348(1 Pt 1):312-21. PubMed ID: 11538569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The application of ecohydrological groundwater indicators to hydrogeological conceptual models.
    Lewis J
    Ground Water; 2012; 50(5):679-89. PubMed ID: 22150517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Origin of spring waters employing a multiparametric approach with special focus on stable isotopes
    Ribeiro C; Velásquez L; Fleming P
    Isotopes Environ Health Stud; 2020 May; 56(2):158-169. PubMed ID: 31957484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media.
    Pathak SP; Singh T
    Int Sch Res Notices; 2014; 2014():189369. PubMed ID: 27350990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.
    Li R; Merchant JW
    Sci Total Environ; 2013 Mar; 447():32-45. PubMed ID: 23376514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uranium in groundwater - The importance of hydraulic regime and groundwater flow system's understanding.
    Erőss A; Csondor K; Izsák B; Vargha M; Horváth Á; Pándics T
    J Environ Radioact; 2018 Dec; 195():90-96. PubMed ID: 30317029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.
    Panno SV; Askari Z; Kelly WR; Parris TM; Hackley KC
    Ground Water; 2018 Jan; 56(1):32-45. PubMed ID: 28715079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study on
    Fang SC
    J Environ Radioact; 2019 Nov; 208-209():105994. PubMed ID: 31228666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers.
    Moeck C; Radny D; Auckenthaler A; Berg M; Hollender J; Schirmer M
    Isotopes Environ Health Stud; 2017 Oct; 53(5):484-499. PubMed ID: 28589773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.
    Liu S; Qi S; Luo Z; Liu F; Ding Y; Huang H; Chen Z; Cheng S
    Environ Geochem Health; 2018 Feb; 40(1):415-433. PubMed ID: 28233233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells.
    Aisopou A; Binning PJ; Albrechtsen HJ; Bjerg PL
    Ground Water; 2015; 53(5):722-36. PubMed ID: 25243476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of groundwater velocity on sampling intervals for contaminant-detection networks in aquifers.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(1):117-22. PubMed ID: 11381781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Search for Freshwater in the Saline Aquifer of Coastal Bangladesh.
    Peters CN; Hornberger GM
    Ground Water; 2020 Jul; 58(4):645-660. PubMed ID: 31432504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating groundwater into land planning: a risk assessment methodology.
    Lavoie R; Joerin F; Vansnick JC; Rodriguez MJ
    J Environ Manage; 2015 May; 154():358-71. PubMed ID: 25768713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.