These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33219528)

  • 1. Imaging of polarized components of Cerenkov light and luminescence of water during carbon-ion irradiation.
    Yamamoto S; Yabe T; Akagi T; Hirano Y
    Med Phys; 2021 Jan; 48(1):427-433. PubMed ID: 33219528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry.
    Yabe T; Akagi T; Yamamoto S
    Phys Med; 2020 Jun; 74():118-124. PubMed ID: 32464469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of temporal response of luminescence of water at lower energy than Cerenkov-light threshold during carbon-ion irradiation.
    Yamamoto S; Akagi T; Hirano Y; Komori M
    Biomed Phys Eng Express; 2020 May; 6(4):045002. PubMed ID: 33444263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase in the intensity of an optical signal with fluorescein during proton and carbon-ion irradiation.
    Yamamoto S; Yabe T; Akagi T
    J Appl Clin Med Phys; 2021 Jul; 22(7):188-197. PubMed ID: 34124832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical note: Correcting angular dependencies using non-polarized components of Cherenkov light in water during high-energy X-ray irradiation.
    Toyonaga C; Yamamoto S; Yabe T; Okudaira K; Yogo K; Hirano Y; Kataoka J
    Med Phys; 2022 Aug; 49(8):5409-5416. PubMed ID: 35670250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of fragment particles in water by nuclear spallation during carbon-ion irradiation.
    Yabe T; Komori M; Akagi T; Yamashita T; Yamamoto S
    Phys Med Biol; 2019 Jul; 64(13):13NT01. PubMed ID: 31189139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescence imaging of water during carbon-ion irradiation for range estimation.
    Yamamoto S; Komori M; Akagi T; Yamashita T; Koyama S; Morishita Y; Sekihara E; Toshito T
    Med Phys; 2016 May; 43(5):2455. PubMed ID: 27147356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of produced light in water during irradiation of gamma photons lower energy than the Cerenkov-light threshold.
    Yamamoto S; Kato K; Abe S
    Appl Radiat Isot; 2020 Mar; 157():109037. PubMed ID: 32063330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy spread estimation of radioactive oxygen ion beams using optical imaging.
    Kang HG; Yamamoto S; Takyu S; Nishikido F; Mohammadi A; Akamatsua G; Sato S; Yamaya T
    Phys Med Biol; 2020 Nov; 65(23):. PubMed ID: 33080581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging for the characterization of radioactive carbon and oxygen ion beams.
    Kang HG; Yamamoto S; Takyu S; Nishikido F; Mohammadi A; Horita R; Sato S; Yamaya T
    Phys Med Biol; 2019 May; 64(11):115009. PubMed ID: 31026851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation.
    Yabe T; Sasano M; Hirano Y; Toshito T; Akagi T; Yamashita T; Hayashi M; Azuma T; Sakamoto Y; Komori M; Yamamoto S
    Phys Med Biol; 2018 Jun; 63(12):125019. PubMed ID: 29923503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry.
    Yabe T; Komori M; Toshito T; Yamaguchi M; Kawachi N; Yamamoto S
    Phys Med Biol; 2018 Feb; 63(4):04NT02. PubMed ID: 29350196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the fractions of luminescence of water at higher energy than Cerenkov-light threshold for various types of radiation.
    Hirano Y; Yamamoto S
    J Biomed Opt; 2019 Jun; 24(6):1-9. PubMed ID: 31218874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution Cerenkov light imaging of induced positron distribution in proton therapy.
    Yamamoto S; Toshito T; Fujii K; Morishita Y; Okumura S; Komori M
    Med Phys; 2014 Nov; 41(11):111913. PubMed ID: 25370646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy.
    Helo Y; Rosenberg I; D'Souza D; Macdonald L; Speller R; Royle G; Gibson A
    Phys Med Biol; 2014 Apr; 59(8):1963-78. PubMed ID: 24694567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cherenkov-excited luminescence scanned imaging using scanned beam differencing and iterative deconvolution in dynamic plan radiation delivery in a human breast phantom geometry.
    Jia MJ; Bruza P; Andreozzi JM; Jarvis LA; Gladstone DJ; Pogue BW
    Med Phys; 2019 Jul; 46(7):3067-3077. PubMed ID: 30980725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence imaging of water during proton-beam irradiation for range estimation.
    Yamamoto S; Toshito T; Okumura S; Komori M
    Med Phys; 2015 Nov; 42(11):6498-506. PubMed ID: 26520739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation.
    Darafsheh A; Taleei R; Kassaee A; Finlay JC
    Med Phys; 2016 Nov; 43(11):5973. PubMed ID: 27806617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy.
    Yabe T; Yamamoto S; Oda M; Mori K; Toshito T; Akagi T
    Med Phys; 2020 Sep; 47(9):3882-3891. PubMed ID: 32623747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate dose measurements using Cherenkov emission polarization imaging.
    Cloutier É; Archambault L; Beaulieu L
    Med Phys; 2022 Aug; 49(8):5417-5422. PubMed ID: 35502867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.