These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33219587)

  • 41. Progress in Circulating Tumor Cell Research Using Microfluidic Devices.
    Gwak H; Kim J; Kashefi-Kheyrabadi L; Kwak B; Hyun KA; Jung HI
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424286
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
    Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y
    Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay.
    Dhar M; Lam JN; Walser T; Dubinett SM; Rettig MB; Di Carlo D
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9986-9991. PubMed ID: 30224472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system.
    Dharmasiri U; Njoroge SK; Witek MA; Adebiyi MG; Kamande JW; Hupert ML; Barany F; Soper SA
    Anal Chem; 2011 Mar; 83(6):2301-9. PubMed ID: 21319808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip.
    Qian C; Wu S; Chen H; Zhang X; Jing R; Shen L; Wang X; Ju S; Jia C; Cong H
    Clin Exp Med; 2018 May; 18(2):191-202. PubMed ID: 29445889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model.
    Chiu TK; Chou WP; Huang SB; Wang HM; Lin YC; Hsieh CH; Wu MH
    Sci Rep; 2016 Sep; 6():32851. PubMed ID: 27609546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic technologies.
    Bhagat AA; Lim CT
    Recent Results Cancer Res; 2012; 195():59-67. PubMed ID: 22527494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic enrichment for the single cell analysis of circulating tumor cells.
    Yeo T; Tan SJ; Lim CL; Lau DP; Chua YW; Krisna SS; Iyer G; Tan GS; Lim TK; Tan DS; Lim WT; Lim CT
    Sci Rep; 2016 Feb; 6():22076. PubMed ID: 26924553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biophysical isolation and identification of circulating tumor cells.
    Che J; Yu V; Garon EB; Goldman JW; Di Carlo D
    Lab Chip; 2017 Apr; 17(8):1452-1461. PubMed ID: 28352869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells.
    Nian M; Chen B; He M; Hu B
    Anal Chem; 2024 Jan; 96(2):766-774. PubMed ID: 38158582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells.
    Murlidhar V; Zeinali M; Grabauskiene S; Ghannad-Rezaie M; Wicha MS; Simeone DM; Ramnath N; Reddy RM; Nagrath S
    Small; 2014 Dec; 10(23):4895-904. PubMed ID: 25074448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly efficient isolation and release of circulating tumor cells based on size-dependent filtration and degradable ZnO nanorods substrate in a wedge-shaped microfluidic chip.
    Li S; Gao Y; Chen X; Qin L; Cheng B; Wang S; Wang S; Zhao G; Liu K; Zhang N
    Biomed Microdevices; 2017 Oct; 19(4):93. PubMed ID: 29071494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer.
    Su W; Yu H; Jiang L; Chen W; Li H; Qin J
    Dis Markers; 2019; 2019():8945974. PubMed ID: 31354892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip.
    Ren X; Foster BM; Ghassemi P; Strobl JS; Kerr BA; Agah M
    Anal Chem; 2018 Jun; 90(12):7526-7534. PubMed ID: 29790741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidics and circulating tumor cells.
    Dong Y; Skelley AM; Merdek KD; Sprott KM; Jiang C; Pierceall WE; Lin J; Stocum M; Carney WP; Smirnov DA
    J Mol Diagn; 2013 Mar; 15(2):149-57. PubMed ID: 23266318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined microfluidic enrichment and staining workflow for single-cell analysis of circulating tumor cells in metastatic prostate cancer patients.
    Løppke C; Jørgensen AM; Sand NT; Klitgaard RB; Daugaard G; Agerbæk MØ
    Sci Rep; 2024 Jul; 14(1):17501. PubMed ID: 39080445
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system.
    Kwak B; Lee J; Lee D; Lee K; Kwon O; Kang S; Kim Y
    Biosens Bioelectron; 2017 Feb; 88():153-158. PubMed ID: 27503409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients.
    Loeian MS; Mehdi Aghaei S; Farhadi F; Rai V; Yang HW; Johnson MD; Aqil F; Mandadi M; Rai SN; Panchapakesan B
    Lab Chip; 2019 Jun; 19(11):1899-1915. PubMed ID: 31049504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.