These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 33219624)

  • 1. Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models.
    Nam Y; Park GE; Kang J; Kim SH
    J Magn Reson Imaging; 2021 Mar; 53(3):818-826. PubMed ID: 33219624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automatic quantification of fibroglandular tissue and background parenchymal enhancement with accurate implementation for axial and sagittal breast MRI protocols.
    Wei D; Jahani N; Cohen E; Weinstein S; Hsieh MK; Pantalone L; Kontos D
    Med Phys; 2021 Jan; 48(1):238-252. PubMed ID: 33150617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks.
    Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y
    Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI.
    Nowakowska S; Borkowski K; Ruppert CM; Landsmann A; Marcon M; Berger N; Boss A; Ciritsis A; Rossi C
    Insights Imaging; 2023 Nov; 14(1):185. PubMed ID: 37932462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based prediction of future breast cancer using algorithmically measured background parenchymal enhancement on high-risk screening MRI.
    Saha A; Grimm LJ; Ghate SV; Kim CE; Soo MS; Yoon SC; Mazurowski MA
    J Magn Reson Imaging; 2019 Aug; 50(2):456-464. PubMed ID: 30648316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist.
    Eskreis-Winkler S; Sutton EJ; D'Alessio D; Gallagher K; Saphier N; Stember J; Martinez DF; Morris EA; Pinker K
    J Magn Reson Imaging; 2022 Oct; 56(4):1068-1076. PubMed ID: 35167152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images.
    Jiang L; Hu X; Xiao Q; Gu Y; Li Q
    Med Phys; 2017 Jun; 44(6):2400-2414. PubMed ID: 28375584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amount of fibroglandular tissue FGT and background parenchymal enhancement BPE in relation to breast cancer risk and false positives in a breast MRI screening program : A retrospective cohort study.
    Vreemann S; Dalmis MU; Bult P; Karssemeijer N; Broeders MJM; Gubern-Mérida A; Mann RM
    Eur Radiol; 2019 Sep; 29(9):4678-4690. PubMed ID: 30796568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Correlation with Age, Background Parenchymal Enhancement, and Amount of Fibroglandular Tissue on MRI.
    Leithner D; Baltzer PA; Magometschnigg HF; Wengert GJ; Karanikas G; Helbich TH; Weber M; Wadsak W; Pinker K
    J Nucl Med; 2016 Oct; 57(10):1518-1522. PubMed ID: 27230924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between qualitative and quantitative assessment of background parenchymal enhancement on breast MRI.
    Pujara AC; Mikheev A; Rusinek H; Gao Y; Chhor C; Pysarenko K; Rallapalli H; Walczyk J; Moccaldi M; Babb JS; Melsaether AN
    J Magn Reson Imaging; 2018 Jun; 47(6):1685-1691. PubMed ID: 29140576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of background parenchymal enhancement in breast MRI predicts response to risk-reducing salpingo-oophorectomy: preliminary evaluation in a cohort of BRCA1/2 mutation carriers.
    Wu S; Weinstein SP; DeLeo MJ; Conant EF; Chen J; Domchek SM; Kontos D
    Breast Cancer Res; 2015 May; 17():67. PubMed ID: 25986460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model.
    Zhang Y; Chan S; Chen JH; Chang KT; Lin CY; Pan HB; Lin WC; Kwong T; Parajuli R; Mehta RS; Chien SH; Su MY
    J Digit Imaging; 2021 Aug; 34(4):877-887. PubMed ID: 34244879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images.
    Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L
    Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
    Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S
    J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net.
    Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY
    Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dynamic contrast-enhanced MRI in evaluating the association between contralateral parenchymal enhancement and survival outcome in ER-positive, HER2-negative, node-negative invasive breast cancer.
    Shin GW; Zhang Y; Kim MJ; Su MY; Kim EK; Moon HJ; Yoon JH; Park VY
    J Magn Reson Imaging; 2018 Dec; 48(6):1678-1689. PubMed ID: 29734483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation.
    Park GE; Kim SH; Nam Y; Kang J; Park M; Kang BJ
    J Magn Reson Imaging; 2024 Jun; 59(6):2252-2262. PubMed ID: 37596823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach.
    Borkowski K; Rossi C; Ciritsis A; Marcon M; Hejduk P; Stieb S; Boss A; Berger N
    Medicine (Baltimore); 2020 Jul; 99(29):e21243. PubMed ID: 32702902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.