BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 33219841)

  • 1. Towards the development of a human in vitro model of the blood-brain barrier for virus-associated acute encephalopathy: assessment of the time- and concentration-dependent effects of TNF-α on paracellular tightness.
    Maeda H; Hashimoto K; Go H; Miyazaki K; Sato M; Kawasaki Y; Momoi N; Hosoya M
    Exp Brain Res; 2021 Feb; 239(2):451-461. PubMed ID: 33219841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a method for evaluating endothelial cell injury by TNF-α in vitro for clarifying the pathophysiology of virus-associated acute encephalopathy.
    Miyazaki K; Hashimoto K; Sato M; Watanabe M; Tomikawa N; Kanno S; Kawasaki Y; Momoi N; Hosoya M
    Pediatr Res; 2017 Jun; 81(6):942-947. PubMed ID: 28157839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour necrosis factor-α-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6.
    Rochfort KD; Collins LE; McLoughlin A; Cummins PM
    J Neurochem; 2016 Feb; 136(3):564-72. PubMed ID: 26499872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage.
    Abdullah Z; Rakkar K; Bath PM; Bayraktutan U
    Mol Cell Neurosci; 2015 Nov; 69():65-79. PubMed ID: 26546149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shengui Sansheng Pulvis maintains blood-brain barrier integrity by vasoactive intestinal peptide after ischemic stroke.
    Xia ZY; Luo C; Liu BW; Bian XQ; Li Y; Pang AM; Xu YH; Tan HM; Zhao YH
    Phytomedicine; 2020 Feb; 67():153158. PubMed ID: 31999981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood-brain barrier models for drug transport studies.
    Gericke B; Römermann K; Noack A; Noack S; Kronenberg J; Blasig IE; Löscher W
    Fluids Barriers CNS; 2020 Aug; 17(1):53. PubMed ID: 32843059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases.
    Clark PR; Kim RK; Pober JS; Kluger MS
    PLoS One; 2015; 10(3):e0120075. PubMed ID: 25816133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Claudin-5 binder enhances focused ultrasound-mediated opening in an
    Chen L; Sutharsan R; Lee JL; Cruz E; Asnicar B; Palliyaguru T; Wasielewska JM; Gaudin A; Song J; Leinenga G; Götz J
    Theranostics; 2022; 12(5):1952-1970. PubMed ID: 35265192
    [No Abstract]   [Full Text] [Related]  

  • 9. Inflammatory mediators reduce surface PrP
    Megra BW; Eugenin EA; Berman JW
    Lab Invest; 2018 Oct; 98(10):1347-1359. PubMed ID: 29959417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5.
    Honda M; Nakagawa S; Hayashi K; Kitagawa N; Tsutsumi K; Nagata I; Niwa M
    Cell Mol Neurobiol; 2006 Mar; 26(2):109-18. PubMed ID: 16763778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function.
    Kakogiannos N; Ferrari L; Giampietro C; Scalise AA; Maderna C; Ravà M; Taddei A; Lampugnani MG; Pisati F; Malinverno M; Martini E; Costa I; Lupia M; Cavallaro U; Beznoussenko GV; Mironov AA; Fernandes B; Rudini N; Dejana E; Giannotta M
    Circ Res; 2020 Sep; 127(8):1056-1073. PubMed ID: 32673519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability.
    Feng S; Zou L; Wang H; He R; Liu K; Zhu H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30227623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray irradiation induces disruption of the blood-brain barrier with localized changes in claudin-5 and activation of microglia in the mouse brain.
    Yoshida Y; Sejimo Y; Kurachi M; Ishizaki Y; Nakano T; Takahashi A
    Neurochem Int; 2018 Oct; 119():199-206. PubMed ID: 29545059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain.
    Neuhaus W; Piontek A; Protze J; Eichner M; Mahringer A; Subileau EA; Lee IM; Schulzke JD; Krause G; Piontek J
    Biomaterials; 2018 Apr; 161():129-143. PubMed ID: 29421550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5.
    McMillin MA; Frampton GA; Seiwell AP; Patel NS; Jacobs AN; DeMorrow S
    Lab Invest; 2015 Aug; 95(8):903-13. PubMed ID: 26006017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serum amyloid A-induced blood-brain barrier dysfunction associated with decreased claudin-5 expression in rat brain endothelial cells and its inhibition by high-density lipoprotein in vitro.
    Matsumoto J; Dohgu S; Takata F; Iwao T; Kimura I; Tomohiro M; Aono K; Kataoka Y; Yamauchi A
    Neurosci Lett; 2020 Nov; 738():135352. PubMed ID: 32931862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TNF-α evokes blood-brain barrier dysfunction through activation of Rho-kinase and neurokinin 1 receptor.
    Gao X; Bayraktutan U
    Immunobiology; 2023 Sep; 228(5):152706. PubMed ID: 37454559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M
    Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage.
    Tang Y; Soroush F; Sun S; Liverani E; Langston JC; Yang Q; Kilpatrick LE; Kiani MF
    J Neuroinflammation; 2018 Nov; 15(1):309. PubMed ID: 30400800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced blood-brain barrier dysfunction is prevented by pericyte-conditioned media via attenuated actomyosin contractility and claudin-5 stabilization.
    Jamieson JJ; Lin Y; Malloy N; Soto D; Searson PC; Gerecht S
    FASEB J; 2022 May; 36(5):e22331. PubMed ID: 35476363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.