These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33220304)

  • 1. Fibrillation of Human Calcitonin and Its Analogs: Effects of Phosphorylation and Disulfide Reduction.
    Renawala HK; Chandrababu KB; Topp EM
    Biophys J; 2021 Jan; 120(1):86-100. PubMed ID: 33220304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrillation of human insulin B-chain by pulsed hydrogen-deuterium exchange mass spectrometry.
    Renawala HK; Topp EM
    Biophys J; 2022 Dec; 121(23):4505-4516. PubMed ID: 36325616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of disulfide bond and cholesterol derivatives on human calcitonin amyloid formation.
    Lantz R; Busbee B; Wojcikiewicz EP; Du D
    Biopolymers; 2020 May; 111(5):e23343. PubMed ID: 31804717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human calcitonin fibrillation in aqueous urea solution by 1H NMR spectroscopy.
    Kanaori K; Nosaka AY
    Biochemistry; 1996 Oct; 35(39):12671-6. PubMed ID: 8841110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transitions and interactions in the early stages of human glucagon amyloid fibrillation.
    Moorthy BS; Ghomi HT; Lill MA; Topp EM
    Biophys J; 2015 Feb; 108(4):937-948. PubMed ID: 25692598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy.
    Kanaori K; Nosaka AY
    Biochemistry; 1995 Sep; 34(38):12138-43. PubMed ID: 7547953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.
    Itoh-Watanabe H; Kamihira-Ishijima M; Kawamura I; Kondoh M; Nakakoshi M; Sato M; Naito A
    Phys Chem Chem Phys; 2013 Oct; 15(39):16956-64. PubMed ID: 24002168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the self-assembly of human calcitonin: a theoretical approach using molecular dynamics simulations.
    Paul S; Paul S
    Phys Chem Chem Phys; 2021 Jul; 23(26):14496-14510. PubMed ID: 34184696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Perturbation of Monomers Determines the Amyloid Aggregation Propensity of Calcitonin Variants.
    Liu Y; Wang Y; Zhang Y; Zou Y; Wei G; Ding F; Sun Y
    J Chem Inf Model; 2023 Jan; 63(1):308-320. PubMed ID: 36456917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation.
    Itoh-Watanabe H; Kamihira-Ishijima M; Javkhlantugs N; Inoue R; Itoh Y; Endo H; Tuzi S; Saitô H; Ueda K; Naito A
    Phys Chem Chem Phys; 2013 Jun; 15(23):8890-901. PubMed ID: 23552643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time.
    Kamgar-Parsi K; Hong L; Naito A; Brooks CL; Ramamoorthy A
    J Biol Chem; 2017 Sep; 292(36):14963-14976. PubMed ID: 28739873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core.
    Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibiting Human Calcitonin Fibril Formation with Its Most Relevant Aggregation-Resistant Analog.
    Chen YT; Hu KW; Huang BJ; Lai CH; Tu LH
    J Phys Chem B; 2019 Dec; 123(48):10171-10180. PubMed ID: 31692350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the fibrillation of highly amyloidogenic human calcitonin by cucurbit[7]uril with improved bioactivity.
    Shang H; Zhou A; Jiang J; Liu Y; Xie J; Li S; Chen Y; Zhu X; Tan H; Li J
    Acta Biomater; 2018 Sep; 78():178-188. PubMed ID: 30076991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoids with Vicinal Hydroxyl Groups Inhibit Human Calcitonin Amyloid Formation.
    Lantz R; Busbee B; Wojcikiewicz EP; Du D
    Chemistry; 2020 Oct; 26(57):13063-13071. PubMed ID: 32458489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation and aggregation of human calcitonin in vitro.
    Lu RH; Kopecková P; Kopecek J
    Pharm Res; 1999 Mar; 16(3):359-67. PubMed ID: 10213365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine 12 of human calcitonin modulates its amyloid formation, membrane binding, and bioactivity.
    Hsieh IC; Chen TW; Chuang YP; Lai YJ; Tu LH
    Biochimie; 2022 Jun; 197():121-129. PubMed ID: 35240220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen/Deuterium Exchange Mass Spectrometry with Integrated Electrochemical Reduction and Microchip-Enabled Deglycosylation for Epitope Mapping of Heavily Glycosylated and Disulfide-Bonded Proteins.
    Comamala G; Krogh CC; Nielsen VS; Kutter JP; Voglmeir J; Rand KD
    Anal Chem; 2021 Dec; 93(49):16330-16340. PubMed ID: 34843209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR.
    Kamihira M; Naito A; Tuzi S; Nosaka AY; Saitô H
    Protein Sci; 2000 May; 9(5):867-77. PubMed ID: 10850796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme prevents highly amyloidogenic human calcitonin (hCT) aggregation: A potential new strategy for the clinical reuse of hCT.
    Ye H; Zhou J; Li H; Gao Z
    J Inorg Biochem; 2019 Jul; 196():110686. PubMed ID: 31003065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.