BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33220420)

  • 1. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.
    Shoji S; Yamaji T; Makino H; Ishii J; Kondo A
    Metab Eng; 2021 May; 65():167-177. PubMed ID: 33220420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide.
    Liu Y; Yasawong M; Yu B
    Microb Biotechnol; 2021 Nov; 14(6):2581-2591. PubMed ID: 34310854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of a Therapeutically Important Nicotinamide Mononucleotide through a Phosphoribosyl Pyrophosphate Synthetase 1 and 2 Engineered Strain of
    Maharjan A; Singhvi M; Kim BS
    ACS Synth Biol; 2021 Nov; 10(11):3055-3065. PubMed ID: 34747173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Engineering of
    Huang Z; Li N; Yu S; Zhang W; Zhang T; Zhou J
    ACS Synth Biol; 2022 Sep; 11(9):2979-2988. PubMed ID: 35977419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma.
    Hara N; Yamada K; Shibata T; Osago H; Tsuchiya M
    PLoS One; 2011; 6(8):e22781. PubMed ID: 21826208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-nicotinamide mononucleotide (NMN) production in Escherichia coli.
    Marinescu GC; Popescu RG; Stoian G; Dinischiotu A
    Sci Rep; 2018 Aug; 8(1):12278. PubMed ID: 30115969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial multi-enzyme cascade biocatalysis for biomanufacturing of nicotinamide mononucleotide from starch and nicotinamide in one-pot.
    Li Q; Meng D; You C
    Enzyme Microb Technol; 2023 Jan; 162():110122. PubMed ID: 36103798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.
    Wang X; Zhou YJ; Wang L; Liu W; Liu Y; Peng C; Zhao ZK
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A holistic approach for process intensification of nicotinamide mononucleotide production via high cell density cultivation under exponential feeding strategy.
    Kafle SR; Kushwaha A; Goswami L; Maharjan A; Kim BS
    Bioresour Technol; 2023 Dec; 390():129911. PubMed ID: 37871744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast Cell Surface Engineering of a Nicotinamide Riboside Kinase for the Production of β-Nicotinamide Mononucleotide via Whole-Cell Catalysis.
    He Z; Yang X; Tian X; Li L; Liu M
    ACS Synth Biol; 2022 Oct; 11(10):3451-3459. PubMed ID: 36219824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
    Mateuszuk Ł; Campagna R; Kutryb-Zając B; Kuś K; Słominska EM; Smolenski RT; Chlopicki S
    Biochem Pharmacol; 2020 Aug; 178():114019. PubMed ID: 32389638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats.
    Kawamura T; Mori N; Shibata K
    J Nutr Sci Vitaminol (Tokyo); 2016; 62(4):272-276. PubMed ID: 27725413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in physiological activities and synthesis of β-nicotinamide mononucleotide].
    Chen Y; Zhou C; Huang J; Tao Y; Ke C; Yang X
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):516-536. PubMed ID: 36847087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD
    Yoshino J; Baur JA; Imai SI
    Cell Metab; 2018 Mar; 27(3):513-528. PubMed ID: 29249689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.
    Black WB; Aspacio D; Bever D; King E; Zhang L; Li H
    Microb Cell Fact; 2020 Jul; 19(1):150. PubMed ID: 32718347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.
    Fletcher RS; Ratajczak J; Doig CL; Oakey LA; Callingham R; Da Silva Xavier G; Garten A; Elhassan YS; Redpath P; Migaud ME; Philp A; Brenner C; Canto C; Lavery GG
    Mol Metab; 2017 Aug; 6(8):819-832. PubMed ID: 28752046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase.
    Burgos ES; Schramm VL
    Biochemistry; 2008 Oct; 47(42):11086-96. PubMed ID: 18823127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological synthesis of nicotinamide mononucleotide.
    Shen Q; Zhang SJ; Xue YZ; Peng F; Cheng DY; Xue YP; Zheng YG
    Biotechnol Lett; 2021 Dec; 43(12):2199-2208. PubMed ID: 34626279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of an enzymatic cascade synthesis of nicotinamide mononucleotide via protein engineering and reaction-process reinforcement.
    Peng F; Hong J; Cui J; An YN; Guo Q; Shen Q; Cheng F; Xue YP; Zheng YG
    Biotechnol J; 2024 Feb; 19(2):e2300748. PubMed ID: 38403401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technology and functional insights into the nicotinamide mononucleotide for human health.
    Liu Y; Gong JS; Marshall G; Su C; Shi JS; Xu ZH
    Appl Microbiol Biotechnol; 2023 Aug; 107(15):4759-4775. PubMed ID: 37347262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.