These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33220497)
1. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. Silvestri S; Cirilli I; Marcheggiani F; Dludla P; Lupidi G; Pettinari R; Marchetti F; Di Nicola C; Falcioni G; Marchini C; Orlando P; Tiano L; Amici A Mitochondrion; 2021 Jan; 56():25-34. PubMed ID: 33220497 [TBL] [Abstract][Full Text] [Related]
2. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Montani M; Pazmay GVB; Hysi A; Lupidi G; Pettinari R; Gambini V; Tilio M; Marchetti F; Pettinari C; Ferraro S; Iezzi M; Marchini C; Amici A Pharmacol Res; 2016 May; 107():282-290. PubMed ID: 27038531 [TBL] [Abstract][Full Text] [Related]
3. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Groessl M; Zava O; Dyson PJ Metallomics; 2011 Jun; 3(6):591-9. PubMed ID: 21399784 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity of the organic ruthenium anticancer drug Nami-A is correlated with DNA binding in four different human tumor cell lines. Pluim D; van Waardenburg RC; Beijnen JH; Schellens JH Cancer Chemother Pharmacol; 2004 Jul; 54(1):71-8. PubMed ID: 15034754 [TBL] [Abstract][Full Text] [Related]
5. Platinoid effects on human plasmatic coagulation kinetics: a viscoelastic analysis. Nielsen VG J Thromb Thrombolysis; 2021 Apr; 51(3):577-583. PubMed ID: 33389608 [TBL] [Abstract][Full Text] [Related]
6. Ruthenium-based chemotherapeutics: are they ready for prime time? Antonarakis ES; Emadi A Cancer Chemother Pharmacol; 2010 May; 66(1):1-9. PubMed ID: 20213076 [TBL] [Abstract][Full Text] [Related]
7. Modification of cell cycle and viability of TLX5 lymphoma in vitro by sulfoxide-ruthenium compounds and cisplatin detected by flow cytometry. Capozzi I; Clerici K; Cocchietto M; Salerno G; Bergamo A; Sava G Chem Biol Interact; 1998 May; 113(1):51-64. PubMed ID: 9630847 [TBL] [Abstract][Full Text] [Related]
8. Effects of the ruthenium-based drug NAMI-A on the roles played by TGF-β1 in the metastatic process. Brescacin L; Masi A; Sava G; Bergamo A J Biol Inorg Chem; 2015 Oct; 20(7):1163-73. PubMed ID: 26369538 [TBL] [Abstract][Full Text] [Related]
9. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro. Hostetter AA; Miranda ML; DeRose VJ; McFarlane Holman KL J Biol Inorg Chem; 2011 Dec; 16(8):1177-85. PubMed ID: 21739255 [TBL] [Abstract][Full Text] [Related]
10. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer. Ruiz MC; Kljun J; Turel I; Di Virgilio AL; León IE Metallomics; 2019 Mar; 11(3):666-675. PubMed ID: 30839008 [TBL] [Abstract][Full Text] [Related]
11. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Brabec V; Nováková O Drug Resist Updat; 2006 Jun; 9(3):111-22. PubMed ID: 16790363 [TBL] [Abstract][Full Text] [Related]
12. Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Morbidelli L; Donnini S; Filippi S; Messori L; Piccioli F; Orioli P; Sava G; Ziche M Br J Cancer; 2003 May; 88(9):1484-91. PubMed ID: 12778081 [TBL] [Abstract][Full Text] [Related]
13. A bifunctional organometallic ruthenium drug with multiple modes of inducing apoptosis. Chatterjee S; Biondi I; Dyson PJ; Bhattacharyya A J Biol Inorg Chem; 2011 Jun; 16(5):715-24. PubMed ID: 21437708 [TBL] [Abstract][Full Text] [Related]
14. In vitro cell cycle arrest, in vivo action on solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. Bergamo A; Gagliardi R; Scarcia V; Furlani A; Alessio E; Mestroni G; Sava G J Pharmacol Exp Ther; 1999 Apr; 289(1):559-64. PubMed ID: 10087050 [TBL] [Abstract][Full Text] [Related]
15. NAMI-A is highly cytotoxic toward leukaemia cell lines: evidence of inhibition of KCa 3.1 channels. Pillozzi S; Gasparoli L; Stefanini M; Ristori M; D'Amico M; Alessio E; Scaletti F; Becchetti A; Arcangeli A; Messori L Dalton Trans; 2014 Aug; 43(32):12150-5. PubMed ID: 24975719 [TBL] [Abstract][Full Text] [Related]
16. A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Rademaker-Lakhai JM; van den Bongard D; Pluim D; Beijnen JH; Schellens JH Clin Cancer Res; 2004 Jun; 10(11):3717-27. PubMed ID: 15173078 [TBL] [Abstract][Full Text] [Related]
17. Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology? Nardon C; Brustolin L; Fregona D Future Med Chem; 2016; 8(2):211-26. PubMed ID: 26807601 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of adhesion, migration and of α5β1 integrin in the HCT-116 colorectal cancer cells treated with the ruthenium drug NAMI-A. Pelillo C; Mollica H; Eble JA; Grosche J; Herzog L; Codan B; Sava G; Bergamo A J Inorg Biochem; 2016 Jul; 160():225-35. PubMed ID: 26961176 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium anticancer drugs. Alessio E; Mestroni G; Bergamo A; Sava G Met Ions Biol Syst; 2004; 42():323-51. PubMed ID: 15206107 [No Abstract] [Full Text] [Related]
20. NAMI-A preferentially reacts with the Sp1 protein: understanding the anti-metastasis effect of the drug. Yuan S; Chen S; Wu H; Jiang H; Zheng S; Zhang Q; Liu Y Chem Commun (Camb); 2020 Jan; 56(9):1397-1400. PubMed ID: 31912815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]