BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33220588)

  • 1. One-step optimization strategy in the simulated moving bed process with asynchronous movement of ports: A VariCol case study.
    Calderón Supelano R; Barreto AG; Andrade Neto AS; Secchi AR
    J Chromatogr A; 2020 Dec; 1634():461672. PubMed ID: 33220588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography.
    Lin X; Gong R; Li J; Li P; Yu J; Rodrigues AE
    J Chromatogr A; 2016 Oct; 1467():347-355. PubMed ID: 27544751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal performance comparison of the simulated moving bed process variants based on the modulation of the length of zones and the feed concentration.
    Calderón Supelano R; Barreto AG; Secchi AR
    J Chromatogr A; 2021 Aug; 1651():462280. PubMed ID: 34111677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of simulated moving bed and Varicol processes.
    Toumi A; Engell S; Ludemann-Hombourger O; Nicoud RM; Bailly M
    J Chromatogr A; 2003 Jul; 1006(1-2):15-31. PubMed ID: 12938873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units.
    Gong R; Lin X; Li P; Yu J; Rodrigues AE
    J Chromatogr A; 2014 Oct; 1363():242-9. PubMed ID: 25047823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the optimal performance of ModiCon and ModiCon+VariCol simulated moving bed variants.
    Supelano RC; Barreto AG; Secchi AR
    J Chromatogr A; 2022 Jul; 1675():463182. PubMed ID: 35675732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal economic design and operation of single- and multi-column chromatographic processes.
    Chan S; Titchener-Hooker N; Sørensen E
    Biotechnol Prog; 2008; 24(2):389-401. PubMed ID: 18386918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval.
    Zhang Z; Mazzotti M; Morbidelli M
    J Chromatogr A; 2003 Jul; 1006(1-2):87-99. PubMed ID: 12938878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance.
    Song JY; Oh D; Lee CH
    J Chromatogr A; 2015 Jul; 1403():104-17. PubMed ID: 26037316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns.
    Pais LS; Rodrigues AE
    J Chromatogr A; 2003 Jul; 1006(1-2):33-44. PubMed ID: 12938874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental assessment of simulated moving bed and varicol processes using a single-column setup.
    Rodrigues RC; Araújo JM; Eusébio MF; Mota JP
    J Chromatogr A; 2007 Feb; 1142(1):69-80. PubMed ID: 17095001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the "VARICOL" process to the separation of the isomers of the SB-553261 racemate.
    Ludemann-Hombourger O; Pigorini G; Nicoud RM; Ross DS; Terfloth G
    J Chromatogr A; 2002 Feb; 947(1):59-68. PubMed ID: 11873998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-port operation in three-zone simulated moving bed chromatography.
    Kim KM; Song JY; Lee CH
    J Chromatogr A; 2014 May; 1340():79-89. PubMed ID: 24661870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal operating mode for enantioseparation of SB-553261 racemate based on simulated moving bed technology.
    Wongso F; Hidajat K; Ray AK
    Biotechnol Bioeng; 2004 Sep; 87(6):704-22. PubMed ID: 15329929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.
    Santos da Silva FV; Seidel-Morgenstern A
    J Chromatogr A; 2016 Jul; 1456():123-36. PubMed ID: 27328885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm.
    Zhang Z; Mazzotti M; Morbidelli M
    J Chromatogr A; 2003 Mar; 989(1):95-108. PubMed ID: 12641286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal design and experimental validation of synchronous, asynchronous and flow-modulated, simulated moving-bed processes using a single-column setup.
    Rodrigues RC; Araújo JM; Mota JP
    J Chromatogr A; 2007 Aug; 1162(1):14-23. PubMed ID: 17306808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the relative merits of port-location rearrangement and partial-feeding as the strategy for improving the performances of a three-zone simulated moving chromatography for separation of succinic acid and lactic acid.
    Mun S
    J Chromatogr A; 2014 May; 1341():8-14. PubMed ID: 24685161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large scale nonlinear optimization for asymmetric operation and design of Simulated Moving Beds.
    Kawajiri Y; Biegler LT
    J Chromatogr A; 2006 Nov; 1133(1-2):226-40. PubMed ID: 16956612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of simulated moving bed chromatography with fractionation and feedback: part I. Fractionation of one outlet.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5337-48. PubMed ID: 20619840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.