BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33220588)

  • 21. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.
    Park C; Nam HG; Lee KB; Mun S
    J Chromatogr A; 2014 Oct; 1365():106-14. PubMed ID: 25240652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three column intermittent simulated moving bed chromatography: 1. Process description and comparative assessment.
    Jermann S; Mazzotti M
    J Chromatogr A; 2014 Sep; 1361():125-38. PubMed ID: 25169723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2012 Mar; 1230():100-9. PubMed ID: 22333683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of simulated moving bed chromatography with fractionation and feedback: part II. Fractionation of both outlets.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5349-57. PubMed ID: 20619841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced performance of a three-zone simulated moving bed chromatography for separation of succinic acid and lactic acid by simultaneous use of port-location rearrangement and partial-feeding.
    Mun S
    J Chromatogr A; 2014 Jul; 1350():72-82. PubMed ID: 24881495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography.
    Kim KM; Lee CH
    J Chromatogr A; 2013 Oct; 1311():79-89. PubMed ID: 24007684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the homogeneity of the column set on the performance of a simulated moving bed unit. I. Theory.
    Mihlbachler K; Fricke J; Yun T; Seidel-Morgenster A; Schmidt-Traub H; Guiochon G
    J Chromatogr A; 2001 Jan; 908(1-2):49-70. PubMed ID: 11218134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance strategy of a simulated moving bed chromatography by simultaneous control of product and feed streams under maximum allowable pressure drop.
    Song JY; Kim KM; Lee CH
    J Chromatogr A; 2016 Nov; 1471():102-117. PubMed ID: 27751522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit.
    Mun S; Wang NL
    J Chromatogr A; 2017 Mar; 1488():104-112. PubMed ID: 28057330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving performance of a tandem simulated moving bed process for sugar separation by making a difference in the adsorbents and the column lengths of the two subordinate simulated moving bed units.
    Mun S
    J Chromatogr A; 2013 Feb; 1277():48-57. PubMed ID: 23332306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop.
    Lee CG; Choi JH; Park C; Wang NL; Mun S
    J Chromatogr A; 2017 Dec; 1527():80-90. PubMed ID: 29096923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of adsorption isotherm parameters on the performance of enantioseparation using simulated moving bed chromatography.
    Kaspereit M; Jandera P; Skavrada M; Seidel-Morgenstern A
    J Chromatogr A; 2002 Jan; 944(1-2):249-62. PubMed ID: 11831760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.
    Wu J; Peng Q; Arlt W; Minceva M
    J Chromatogr A; 2009 Dec; 1216(50):8793-805. PubMed ID: 19344909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulated moving bed chromatography with supercritical fluids for the resolution of bi-naphthol enantiomers and phytol isomers.
    Johannsen M; Peper S; Depta A
    J Biochem Biophys Methods; 2002 Dec; 54(1-3):85-102. PubMed ID: 12543493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relay simulated moving bed chromatography: concept and design criteria.
    Silva RJ; Rodrigues RC; Mota JP
    J Chromatogr A; 2012 Oct; 1260():132-42. PubMed ID: 22980644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermittent simulated moving bed chromatography: 2. Separation of Tröger's base enantiomers.
    Katsuo S; Mazzotti M
    J Chromatogr A; 2010 Apr; 1217(18):3067-75. PubMed ID: 20346456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation of stereoisomers in a simulated moving bed-supercritical fluid chromatography plant.
    Depta A; Giese T; Johannsen M; Brunner G
    J Chromatogr A; 1999 Dec; 865(1-2):175-86. PubMed ID: 10674940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of a True Moving Bed separation process: Linear model identification and advanced process control.
    Nogueira IBR; Ribeiro AM; Martins MAF; Rodrigues AE; Koivisto H; Loureiro JM
    J Chromatogr A; 2017 Jun; 1504():112-123. PubMed ID: 28515005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal design of a simulated-moving-bed chromatographic process for high-purity separation of acetoin from 2,3-butanediol in a continuous mode.
    Lee CG; Jo CY; Song YJ; Park H; Mun S
    J Chromatogr A; 2019 Dec; 1607():460394. PubMed ID: 31400841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.