BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 33220605)

  • 1. Understanding the effects of vehicle platoons on crash type and severity.
    Hyun KK; Mitra SK; Jeong K; Tok A
    Accid Anal Prev; 2021 Jan; 149():105858. PubMed ID: 33220605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on occupant injury severity in rear-end crashes involving trucks as the front vehicle in Beijing area, China.
    Yuan Q; Lu M; Theofilatos A; Li YB
    Chin J Traumatol; 2017 Feb; 20(1):20-26. PubMed ID: 28162916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injury-severity analysis of lane change crashes involving commercial motor vehicles on interstate highways.
    Adanu EK; Lidbe A; Tedla E; Jones S
    J Safety Res; 2021 Feb; 76():30-35. PubMed ID: 33653562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing rear-end crash potential in urban locations based on vehicle-by-vehicle interactions, geometric characteristics and operational conditions.
    Dimitriou L; Stylianou K; Abdel-Aty MA
    Accid Anal Prev; 2018 Sep; 118():221-235. PubMed ID: 29502853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analysis of the patterns and characteristics of connected and autonomous vehicle involved crashes.
    Xu C; Ding Z; Wang C; Li Z
    J Safety Res; 2019 Dec; 71():41-47. PubMed ID: 31862043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing driver injury severity in two-vehicle rear-end crashes considering leading-following configurations based on passenger car and light truck involvement.
    Zou R; Yang H; Yu W; Yu H; Chen C; Zhang G; Ma DT
    Accid Anal Prev; 2023 Dec; 193():107298. PubMed ID: 37738845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Association between Regional Environmental Factors and Road Trauma Rates: A Geospatial Analysis of 10 Years of Road Traffic Crashes in British Columbia, Canada.
    Brubacher JR; Chan H; Erdelyi S; Schuurman N; Amram O
    PLoS One; 2016; 11(4):e0153742. PubMed ID: 27099930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying effects of reverse linear perspective as a visual cue on vehicle and platoon crash risk variations in car-following using path analysis.
    Ding N; Lu Z; Jiao N; Liu Z; Lu L
    Accid Anal Prev; 2021 Sep; 159():106215. PubMed ID: 34130057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the Factors Contributing to the Severity of Truck-Involved Crashes in Shanghai River-Crossing Tunnel.
    Chen S; Zhang S; Xing Y; Lu J
    Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32369928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes.
    Chen C; Zhang G; Tarefder R; Ma J; Wei H; Guan H
    Accid Anal Prev; 2015 Jul; 80():76-88. PubMed ID: 25888994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the differences in distracted driving injury severities in passenger car, sport utility vehicle, pickup truck, and minivan crashes.
    Islam M
    Accid Anal Prev; 2024 Mar; 196():107444. PubMed ID: 38169183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of injury severities in single-vehicle crashes in North Carolina using mixed logit models.
    Roque C; Jalayer M; Hasan AS
    J Safety Res; 2021 Jun; 77():161-169. PubMed ID: 34092306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirical analysis of driver injury severities in work-zone and non-work-zone crashes involving single-vehicle large trucks.
    Islam M
    Traffic Inj Prev; 2022; 23(7):398-403. PubMed ID: 35896030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the severity of single-vehicle truck crashes under different crash types using mixed logit models.
    Abdi A; O'Hern S
    J Safety Res; 2024 Feb; 88():344-353. PubMed ID: 38485377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario.
    Russo F; Biancardo SA; Dell'Acqua G
    Traffic Inj Prev; 2014; 15(1):25-33. PubMed ID: 24279963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driver injury severity outcome analysis in rural interstate highway crashes: a two-level Bayesian logistic regression interpretation.
    Chen C; Zhang G; Liu XC; Ci Y; Huang H; Ma J; Chen Y; Guan H
    Accid Anal Prev; 2016 Dec; 97():69-78. PubMed ID: 27591415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data mining approach to explore emergency vehicle crash patterns: A comparative study of crash severity in emergency and non-emergency response modes.
    Hossain MM; Zhou H; Das S
    Accid Anal Prev; 2023 Oct; 191():107217. PubMed ID: 37453252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing crash risk considering vehicle interactions with trucks using point detector data.
    Hyun KK; Jeong K; Tok A; Ritchie SG
    Accid Anal Prev; 2019 Sep; 130():75-83. PubMed ID: 29544655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-truck drivers' following behavior with intervention of an integrated, in-vehicle crash warning system: a field evaluation.
    Bao S; LeBlanc DJ; Sayer JR; Flannagan C
    Hum Factors; 2012 Oct; 54(5):687-97. PubMed ID: 23156615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overloading among crash-involved vehicles in China: identification of factors associated with overloading and crash severity.
    Zhang G; Li Y; King MJ; Zhong Q
    Inj Prev; 2019 Feb; 25(1):36-46. PubMed ID: 29563142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.