These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33220674)

  • 1. Improvement of d-d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+
    Stepanovic S; Lai R; Elstner M; Gruden M; Garcia-Fernandez P; Cui Q
    Phys Chem Chem Phys; 2020 Dec; 22(46):27084-27095. PubMed ID: 33220674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the applicability of density functional tight binding to transition metal ions. Parameterization for nickel with the spin-polarized DFTB3 model.
    Vujović M; Huynh M; Steiner S; Garcia-Fernandez P; Elstner M; Cui Q; Gruden M
    J Comput Chem; 2019 Jan; 40(2):400-413. PubMed ID: 30299559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications.
    Gaus M; Lu X; Elstner M; Cui Q
    J Chem Theory Comput; 2014 Apr; 10(4):1518-1537. PubMed ID: 24803865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals.
    Lu X; Duchimaza-Heredia J; Cui Q
    J Phys Chem A; 2019 Aug; 123(34):7439-7453. PubMed ID: 31373822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters.
    Gaus M; Jin H; Demapan D; Christensen AS; Goyal P; Elstner M; Cui Q
    J Chem Theory Comput; 2015 Sep; 11(9):4205-19. PubMed ID: 26575916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization.
    Christensen AS; Elstner M; Cui Q
    J Chem Phys; 2015 Aug; 143(8):084123. PubMed ID: 26328834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description of halogen bonding in semiempirical quantum-mechanical and self-consistent charge density-functional tight-binding methods.
    Řezáč J
    J Comput Chem; 2019 Jun; 40(17):1633-1642. PubMed ID: 30941801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reparameterization of the chemical-potential equalization model with DFTB3: A practical balance between accuracy and transferability.
    Vuong VQ; Cui Q
    J Chem Phys; 2023 Feb; 158(6):064111. PubMed ID: 36792512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
    Gaus M; Cui Q; Elstner M
    J Chem Theory Comput; 2012 Apr; 7(4):931-948. PubMed ID: 23204947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation of water and hydration effects in different environments: challenges and developments for DFTB based models.
    Goyal P; Qian HJ; Irle S; Lu X; Roston D; Mori T; Elstner M; Cui Q
    J Phys Chem B; 2014 Sep; 118(38):11007-27. PubMed ID: 25166899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A non-empirical calculation of 2p core-electron excitation in compounds with 3d transition metal ions using ligand-field and density functional theory (LFDFT).
    Ramanantoanina H; Daul C
    Phys Chem Chem Phys; 2017 Aug; 19(31):20919-20929. PubMed ID: 28745769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3.
    Řezáč J
    J Chem Theory Comput; 2017 Oct; 13(10):4804-4817. PubMed ID: 28949517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of mixed thiolate/thioether versus dithiolate coordination on the accessibility of the uncommon +I and +III oxidation states for the nickel ion: an experimental and computational study.
    Gennari M; Orio M; Pécaut J; Bothe E; Neese F; Collomb MN; Duboc C
    Inorg Chem; 2011 Apr; 50(8):3707-16. PubMed ID: 21428312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipole Expansion of Atomic Electron Density Fluctuation Interactions in the Density-Functional Tight-Binding Method.
    Vuong VQ; Aradi B; Niklasson AMN; Cui Q; Irle S
    J Chem Theory Comput; 2023 Nov; 19(21):7592-7605. PubMed ID: 37890454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches.
    Duboc C; Ganyushin D; Sivalingam K; Collomb MN; Neese F
    J Phys Chem A; 2010 Oct; 114(39):10750-8. PubMed ID: 20828179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications.
    Lu X; Gaus M; Elstner M; Cui Q
    J Phys Chem B; 2015 Jan; 119(3):1062-82. PubMed ID: 25178644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of nickel(II) and zinc(II) borohydrides from spectroscopic measurements and computational modeling.
    Desrochers PJ; Sutton CA; Abrams ML; Ye S; Neese F; Telser J; Ozarowski A; Krzystek J
    Inorg Chem; 2012 Mar; 51(5):2793-805. PubMed ID: 22335547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametrization and Benchmark of DFTB3 for Organic Molecules.
    Gaus M; Goez A; Elstner M
    J Chem Theory Comput; 2013 Jan; 9(1):338-54. PubMed ID: 26589037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.