These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33220682)

  • 1. Introducing a "core steel microbiome" and community functional analysis associated with microbially influenced corrosion.
    Garrison CE; Field EK
    FEMS Microbiol Ecol; 2020 Dec; 97(1):. PubMed ID: 33220682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities.
    Garrison CE; Price KA; Field EK
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study.
    Rajala P; Cheng DQ; Rice SA; Lauro FM
    Microbiome; 2022 Jan; 10(1):4. PubMed ID: 35027090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view.
    Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.
    Dang H; Chen R; Wang L; Shao S; Dai L; Ye Y; Guo L; Huang G; Klotz MG
    Environ Microbiol; 2011 Nov; 13(11):3059-74. PubMed ID: 21951343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation in deep groundwater chemistry and microbial community and their impact on corrosion of stainless-steels.
    Rajala P; Nuppunen-Puputti M; Wheat CG; Carpen L
    Sci Total Environ; 2022 Jun; 824():153965. PubMed ID: 35182643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of iron-oxidizing bacteria in biocorrosion: a review.
    Emerson D
    Biofouling; 2018 Oct; 34(9):989-1000. PubMed ID: 30642207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks.
    Mugge RL; Moseley RD; Hamdan LJ
    Microorganisms; 2023 Sep; 11(10):. PubMed ID: 37894074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity to built structures on the seabed promotes biofilm development and diversity.
    Mugge RL; Rakocinski CF; Woolsey M; Hamdan LJ
    Biofouling; 2023; 39(7):706-718. PubMed ID: 37746691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiologically influenced corrosion of stainless steel independent of sulfate-reducing bacteria.
    Wakai S; Eno N; Mizukami H; Sunaba T; Miyanaga K; Miyano Y
    Front Microbiol; 2022; 13():982047. PubMed ID: 36312937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention.
    Liu P; Zhang H; Fan Y; Xu D
    Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm.
    Procópio L
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6397-6411. PubMed ID: 32458139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine biofilm bacterial community response and carbon steel loss following Deepwater Horizon spill contaminant exposure.
    Mugge RL; Lee JS; Brown TT; Hamdan LJ
    Biofouling; 2019 Sep; 35(8):870-882. PubMed ID: 31603038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Shallow Water Ferrous-Hulled Shipwreck Reveals a Distinct Microbial Community.
    Price KA; Garrison CE; Richards N; Field EK
    Front Microbiol; 2020; 11():1897. PubMed ID: 32973699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel.
    Rufino BN; Procópio L
    Curr Microbiol; 2021 Sep; 78(9):3394-3402. PubMed ID: 34232364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces.
    Lenhart TR; Duncan KE; Beech IB; Sunner JA; Smith W; Bonifay V; Biri B; Suflita JM
    Biofouling; 2014; 30(7):823-35. PubMed ID: 25115517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of biofilms in the corrosion of steel in marine environments.
    Procópio L
    World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.