These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 33220941)
1. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Hata A; Yanagawa M; Yoshida Y; Miyata T; Kikuchi N; Honda O; Tomiyama N Clin Radiol; 2021 Feb; 76(2):155.e15-155.e23. PubMed ID: 33220941 [TBL] [Abstract][Full Text] [Related]
2. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH; Yoon HJ; Lee E; Kim I; Cha YK; Bak SH Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [TBL] [Abstract][Full Text] [Related]
3. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Nam JG; Hong JH; Kim DS; Oh J; Goo JM Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354 [TBL] [Abstract][Full Text] [Related]
4. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V). Li Y; Liu X; Zhuang XH; Wang MJ; Song XF BMC Med Imaging; 2022 Jun; 22(1):106. PubMed ID: 35658908 [TBL] [Abstract][Full Text] [Related]
5. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. Bie Y; Yang S; Li X; Zhao K; Zhang C; Zhong H J Xray Sci Technol; 2022; 30(3):409-418. PubMed ID: 35124575 [TBL] [Abstract][Full Text] [Related]
6. Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis. Sun J; Li H; Li H; Li M; Gao Y; Zhou Z; Peng Y J Xray Sci Technol; 2022; 30(1):177-184. PubMed ID: 34806646 [TBL] [Abstract][Full Text] [Related]
7. Can 1.25 mm thin-section images generated with Deep Learning Image Reconstruction technique replace standard-of-care 5 mm images in abdominal CT? Cao J; Mroueh N; Pisuchpen N; Parakh A; Lennartz S; Pierce TT; Kambadakone AR Abdom Radiol (NY); 2023 Oct; 48(10):3253-3264. PubMed ID: 37369922 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [TBL] [Abstract][Full Text] [Related]
10. Improving spatial resolution and diagnostic confidence with thinner slice and deep learning image reconstruction in contrast-enhanced abdominal CT. Cao L; Liu X; Qu T; Cheng Y; Li J; Li Y; Chen L; Niu X; Tian Q; Guo J Eur Radiol; 2023 Mar; 33(3):1603-1611. PubMed ID: 36190531 [TBL] [Abstract][Full Text] [Related]
11. Application of deep learning image reconstruction in low-dose chest CT scan. Wang H; Li LL; Shang J; Song J; Liu B Br J Radiol; 2022 May; 95(1133):20210380. PubMed ID: 35084210 [TBL] [Abstract][Full Text] [Related]
12. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305 [TBL] [Abstract][Full Text] [Related]
13. Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT. Xu JJ; Lönn L; Budtz-Jørgensen E; Hansen KL; Ulriksen PS Eur Radiol; 2022 Oct; 32(10):7098-7107. PubMed ID: 35895120 [TBL] [Abstract][Full Text] [Related]
14. Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience. Jensen CT; Liu X; Tamm EP; Chandler AG; Sun J; Morani AC; Javadi S; Wagner-Bartak NA AJR Am J Roentgenol; 2020 Jul; 215(1):50-57. PubMed ID: 32286872 [No Abstract] [Full Text] [Related]
15. Improved overall image quality in low-dose dual-energy computed tomography enterography using deep-learning image reconstruction. Lin X; Gao Y; Zhu C; Song J; Liu L; Li J; Wu X Abdom Radiol (NY); 2024 Sep; 49(9):2979-2987. PubMed ID: 38480547 [TBL] [Abstract][Full Text] [Related]
16. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Parakh A; Cao J; Pierce TT; Blake MA; Savage CA; Kambadakone AR Eur Radiol; 2021 Nov; 31(11):8342-8353. PubMed ID: 33893535 [TBL] [Abstract][Full Text] [Related]
17. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999 [TBL] [Abstract][Full Text] [Related]
18. Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm. Caruso D; De Santis D; Del Gaudio A; Guido G; Zerunian M; Polici M; Valanzuolo D; Pugliese D; Persechino R; Cremona A; Barbato L; Caloisi A; Iannicelli E; Laghi A Eur Radiol; 2024 Apr; 34(4):2384-2393. PubMed ID: 37688618 [TBL] [Abstract][Full Text] [Related]
19. A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions. Cao L; Liu X; Li J; Qu T; Chen L; Cheng Y; Hu J; Sun J; Guo J Br J Radiol; 2021 Feb; 94(1118):20201086. PubMed ID: 33242256 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Kim I; Kang H; Yoon HJ; Chung BM; Shin NY Neuroradiology; 2021 Jun; 63(6):905-912. PubMed ID: 33037503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]