These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 33220984)
1. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation. Wang CY; Zeng Q; Zhu G Chemosphere; 2021 Apr; 268():128854. PubMed ID: 33220984 [TBL] [Abstract][Full Text] [Related]
2. Electron-Level Mechanistic Insights into Ce Doping for Enhanced Efficiency Degradation of Bisphenol A under Visible Light Irradiation. Zeng Q; Wang CY; Xu BX; Han J; Fang X; Zhu G Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458090 [TBL] [Abstract][Full Text] [Related]
3. Enhanced photocatalytic degradation of tetracycline hydrochloride over Au-doped BiOBr nanosheets under visible light irradiation. Wang CY; Fang X; Zeng Q; Zhou HD; Lu Y PLoS One; 2022; 17(8):e0273169. PubMed ID: 36018844 [TBL] [Abstract][Full Text] [Related]
4. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation. Wang CY; Zhang X; Song XN; Wang WK; Yu HQ ACS Appl Mater Interfaces; 2016 Mar; 8(8):5320-6. PubMed ID: 26848924 [TBL] [Abstract][Full Text] [Related]
5. Visible-Light-Driven Ag-Doped BiOBr Nanoplates with an Enhanced Photocatalytic Performance for the Degradation of Bisphenol A. Wang CY; Zeng Q; Wang LX; Fang X; Zhu G Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683764 [TBL] [Abstract][Full Text] [Related]
6. Enhanced visible-light driven photocatalytic degradation of bisphenol A by tuning electronic structure of Bi/BiOBr. Wang Q; Cao Y; Yu Y; Zhang C; Huang J; Liu G; Zhang X; Wang Z; Ozgun H; Ersahin ME; Wang W Chemosphere; 2022 Dec; 308(Pt 2):136276. PubMed ID: 36058375 [TBL] [Abstract][Full Text] [Related]
7. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Liu Y; Hu Z; Yu JC Chemosphere; 2021 Sep; 278():130376. PubMed ID: 33838422 [TBL] [Abstract][Full Text] [Related]
8. Tuning interfacial oxygen vacancy level of bismuth oxybromide to enhance photocatalytic degradation of bisphenol A. Liu LX; Liu C; Li B; Dong YM; Wang XH; Zhang X Chemosphere; 2024 May; 356():141911. PubMed ID: 38583539 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of vessel-like biochar-based heterojunction photocatalyst Bi Li S; Wang Z; Xie X; Liang G; Cai X; Zhang X; Wang Z J Hazard Mater; 2020 Jun; 391():121407. PubMed ID: 32145925 [TBL] [Abstract][Full Text] [Related]
10. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. Wu Y; Ji H; Liu Q; Sun Z; Li P; Ding P; Guo M; Yi X; Xu W; Wang CC; Gao S; Wang Q; Liu W; Chen S J Hazard Mater; 2022 Feb; 424(Pt C):127563. PubMed ID: 34736201 [TBL] [Abstract][Full Text] [Related]
11. Facile Green Synthesis of BiOBr Nanostructures with Superior Visible-Light-Driven Photocatalytic Activity. Garg S; Yadav M; Chandra A; Sapra S; Gahlawat S; Ingole PP; Todea M; Bardos E; Pap Z; Hernadi K Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042360 [TBL] [Abstract][Full Text] [Related]
12. Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity. Hu Q; Ji M; Di J; Wang B; Xia J; Zhao Y; Li H J Colloid Interface Sci; 2018 Jun; 519():263-272. PubMed ID: 29505988 [TBL] [Abstract][Full Text] [Related]
13. Growth of sulfur-doped bismuth oxybromide nanosheets on carbon fiber cloth for photocatalytically purifying antibiotic wastewater. Li X; Wu L; Macharia DK; He M; Han C; He H; Li M; Zhang L; Chen Z J Colloid Interface Sci; 2025 Jan; 678(Pt A):959-969. PubMed ID: 39226836 [TBL] [Abstract][Full Text] [Related]
14. Cadmium sulphide quantum dots sensitized hierarchical bismuth oxybromide microsphere with highly efficient photocatalytic activity. Liu Z; Wu B; Zhu Y; Wang F; Wang L J Colloid Interface Sci; 2013 Feb; 392():337-342. PubMed ID: 23127871 [TBL] [Abstract][Full Text] [Related]
15. Noble metals (Pd, Ag, Pt, and Au) doped bismuth oxybromide photocatalysts for improved visible light-driven catalytic activity for the degradation of phenol. Arumugam M; Koutavarapu R; Seralathan KK; Praserthdam S; Praserthdam P Chemosphere; 2023 May; 324():138368. PubMed ID: 36905999 [TBL] [Abstract][Full Text] [Related]
16. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Ai Z; Ho W; Lee S; Zhang L Environ Sci Technol; 2009 Jun; 43(11):4143-50. PubMed ID: 19569343 [TBL] [Abstract][Full Text] [Related]
17. Ultrahigh-efficient BiOBr-x%La@y%CNQDs nanocomposites with enhanced generation and separation of photogenerated carriers towards bisphenol A degradation and toxicity reduction. Yu W; Wang Y; Wan S; Sun L; Yu Z Chemosphere; 2022 Dec; 308(Pt 2):136390. PubMed ID: 36113661 [TBL] [Abstract][Full Text] [Related]
18. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. Shang M; Wang W; Zhang L J Hazard Mater; 2009 Aug; 167(1-3):803-9. PubMed ID: 19231070 [TBL] [Abstract][Full Text] [Related]
19. In situ construction bismuth oxycarbonate/bismuth oxybromide Z-scheme heterojunction for efficient photocatalytic removal of tetracycline and ciprofloxacin. Yan X; Ji Q; Wang C; Xu J; Wang L J Colloid Interface Sci; 2021 Apr; 587():820-830. PubMed ID: 33234313 [TBL] [Abstract][Full Text] [Related]
20. Facile construction of flower-like bismuth oxybromide/bismuth oxide formate p-n heterojunctions with significantly enhanced photocatalytic performance under visible light. Li S; Chen J; Jiang W; Liu Y; Ge Y; Liu J J Colloid Interface Sci; 2019 Jul; 548():12-19. PubMed ID: 30978591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]