These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33221452)

  • 1. The impact of hand movement velocity on cognitive conflict processing in a 3D object selection task in virtual reality.
    Singh AK; Gramann K; Chen HT; Lin CT
    Neuroimage; 2021 Feb; 226():117578. PubMed ID: 33221452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paradoxical adaptation of successful movements: The crucial role of internal error signals.
    Gaveau V; Priot AE; Pisella L; Havé L; Prablanc C; Rossetti Y
    Conscious Cogn; 2018 Sep; 64():135-145. PubMed ID: 30025675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different responses of the right superior temporal sulcus to visual movement feedback during self-generated vs. externally generated hand movements.
    Limanowski J; Sarasso P; Blankenburg F
    Eur J Neurosci; 2018 Feb; 47(4):314-320. PubMed ID: 29356166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiencing the Cross-Sensory Error Signal During Movement Leads to Proprioceptive Recalibration.
    Maksimovic S; Neville KM; Cressman EK
    J Mot Behav; 2020; 52(1):122-129. PubMed ID: 30761949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical beta oscillations reflect the contextual gating of visual action feedback.
    Limanowski J; Litvak V; Friston K
    Neuroimage; 2020 Nov; 222():117267. PubMed ID: 32818621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task.
    Marini F; Zenzeri J; Pippo V; Morasso P; Campus C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural consequences of conflict between intention and the senses.
    Fink GR; Marshall JC; Halligan PW; Frith CD; Driver J; Frackowiak RS; Dolan RJ
    Brain; 1999 Mar; 122 ( Pt 3)():497-512. PubMed ID: 10094258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active inference under visuo-proprioceptive conflict: Simulation and empirical results.
    Limanowski J; Friston K
    Sci Rep; 2020 Mar; 10(1):4010. PubMed ID: 32132646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recalibration of hand position sense during unconscious active and passive movement.
    Abdulkarim Z; Ehrsson HH
    Exp Brain Res; 2018 Feb; 236(2):551-561. PubMed ID: 29243136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum.
    Quirmbach F; Limanowski J
    Cereb Cortex; 2024 Sep; 34(9):. PubMed ID: 39325000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined contribution of tactile and proprioceptive feedback to hand movement perception.
    Blanchard C; Roll R; Roll JP; Kavounoudias A
    Brain Res; 2011 Mar; 1382():219-29. PubMed ID: 21276776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lost in space: multisensory conflict yields adaptation in spatial representations across frames of reference.
    Lohmann J; Butz MV
    Cogn Process; 2017 Aug; 18(3):211-228. PubMed ID: 28349249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Embodiment of a Point-Light Display in Virtual Reality to Perception of One's Own Movements.
    Giroux M; Barra J; Barraud PA; Graff C; Guerraz M
    Neuroscience; 2019 Sep; 416():30-40. PubMed ID: 31377453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the neural basis of sensory weighting: Alpha, beta and gamma modulations during complex movements.
    Lebar N; Danna J; Moré S; Mouchnino L; Blouin J
    Neuroimage; 2017 Apr; 150():200-212. PubMed ID: 28215622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.