These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33221507)
21. Ocean Acidification Affects the Response of the Coastal Coccolithophore Wu F; Guo J; Duan H; Li T; Wang Y; Wang Y; Wang S; Feng Y Biology (Basel); 2023 Sep; 12(9):. PubMed ID: 37759648 [TBL] [Abstract][Full Text] [Related]
22. Phagocytosis in Marine Coccolithophore Ye J; Wang Y; Li Q; Hussain S; Chen S; Zhou X; Hou S; Feng Y Biology (Basel); 2024 Apr; 13(5):. PubMed ID: 38785792 [TBL] [Abstract][Full Text] [Related]
23. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Rouco M; Branson O; Lebrato M; Iglesias-Rodríguez MD Front Microbiol; 2013; 4():155. PubMed ID: 23785363 [TBL] [Abstract][Full Text] [Related]
24. TESTING THE EFFECTS OF ELEVATED PCO2 ON COCCOLITHOPHORES (PRYMNESIOPHYCEAE): COMPARISON BETWEEN HAPLOID AND DIPLOID LIFE STAGES(1). Fiorini S; Middelburg JJ; Gattuso JP J Phycol; 2011 Dec; 47(6):1281-91. PubMed ID: 27020352 [TBL] [Abstract][Full Text] [Related]
25. Emiliania huxleyi coccolith calcite mass modulation by morphological changes and ecology in the Mediterranean Sea. D'Amario B; Ziveri P; Grelaud M; Oviedo A PLoS One; 2018; 13(7):e0201161. PubMed ID: 30040853 [TBL] [Abstract][Full Text] [Related]
26. Intraspecific Differences in Biogeochemical Responses to Thermal Change in the Coccolithophore Emiliania huxleyi. Matson PG; Ladd TM; Halewood ER; Sangodkar RP; Chmelka BF; Iglesias-Rodriguez MD PLoS One; 2016; 11(9):e0162313. PubMed ID: 27584038 [TBL] [Abstract][Full Text] [Related]
27. Phytoplankton calcification in a high-CO2 world. Iglesias-Rodriguez MD; Halloran PR; Rickaby RE; Hall IR; Colmenero-Hidalgo E; Gittins JR; Green DR; Tyrrell T; Gibbs SJ; von Dassow P; Rehm E; Armbrust EV; Boessenkool KP Science; 2008 Apr; 320(5874):336-40. PubMed ID: 18420926 [TBL] [Abstract][Full Text] [Related]
28. Effects of elevated CO Lorenzo MR; Neale PJ; Sobrino C; León P; Vázquez V; Bresnan E; Segovia M J Phycol; 2019 Aug; 55(4):775-788. PubMed ID: 31090939 [TBL] [Abstract][Full Text] [Related]
29. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean. Muller EB; Nisbet RM Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588 [TBL] [Abstract][Full Text] [Related]
30. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Benner I; Diner RE; Lefebvre SC; Li D; Komada T; Carpenter EJ; Stillman JH Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20130049. PubMed ID: 23980248 [TBL] [Abstract][Full Text] [Related]
31. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Terrats L; Claustre H; Cornec M; Mangin A; Neukermans G Geophys Res Lett; 2020 Dec; 47(23):e2020GL090559. PubMed ID: 33380764 [TBL] [Abstract][Full Text] [Related]
32. Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient. Ziveri P; Passaro M; Incarbona A; Milazzo M; Rodolfo-Metalpa R; Hall-Spencer JM Biol Bull; 2014 Jun; 226(3):282-90. PubMed ID: 25070871 [TBL] [Abstract][Full Text] [Related]
33. A coastal coccolithophore maintains pH homeostasis and switches carbon sources in response to ocean acidification. Liu YW; Eagle RA; Aciego SM; Gilmore RE; Ries JB Nat Commun; 2018 Jul; 9(1):2857. PubMed ID: 30030435 [TBL] [Abstract][Full Text] [Related]
34. Regulation of CaCO(3) formation in coccolithophores. Marsh ME Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):743-54. PubMed ID: 14662299 [TBL] [Abstract][Full Text] [Related]
35. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Smith HE; Tyrrell T; Charalampopoulou A; Dumousseaud C; Legge OJ; Birchenough S; Pettit LR; Garley R; Hartman SE; Hartman MC; Sagoo N; Daniels CJ; Achterberg EP; Hydes DJ Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8845-9. PubMed ID: 22615387 [TBL] [Abstract][Full Text] [Related]
36. The role of coccolithophore calcification in bioengineering their environment. Flynn KJ; Clark DR; Wheeler G Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358373 [TBL] [Abstract][Full Text] [Related]
37. Increasing costs due to ocean acidification drives phytoplankton to be more heavily calcified: optimal growth strategy of coccolithophores. Irie T; Bessho K; Findlay HS; Calosi P PLoS One; 2010 Oct; 5(10):e13436. PubMed ID: 20976167 [TBL] [Abstract][Full Text] [Related]